8,067 research outputs found

    Sharp transition towards shared vocabularies in multi-agent systems

    Get PDF
    What processes can explain how very large populations are able to converge on the use of a particular word or grammatical construction without global coordination? Answering this question helps to understand why new language constructs usually propagate along an S-shaped curve with a rather sudden transition towards global agreement. It also helps to analyze and design new technologies that support or orchestrate self-organizing communication systems, such as recent social tagging systems for the web. The article introduces and studies a microscopic model of communicating autonomous agents performing language games without any central control. We show that the system undergoes a disorder/order transition, going trough a sharp symmetry breaking process to reach a shared set of conventions. Before the transition, the system builds up non-trivial scale-invariant correlations, for instance in the distribution of competing synonyms, which display a Zipf-like law. These correlations make the system ready for the transition towards shared conventions, which, observed on the time-scale of collective behaviors, becomes sharper and sharper with system size. This surprising result not only explains why human language can scale up to very large populations but also suggests ways to optimize artificial semiotic dynamics.Comment: 12 pages, 4 figure

    HST and UKIRT imaging observations of z~1 6C radio galaxies - II. Galaxy morphologies and the alignment effect

    Get PDF
    (abridged) Powerful radio galaxies often display enhanced optical/UV emission regions, elongated and aligned with the radio jet axis. The aim of this series of papers is to separately investigate the effects of radio power and redshift on the alignment effect, together with other radio galaxy properties. In this second paper, we present a deeper analysis of the morphological properties of these systems, including both the host galaxies and their surrounding aligned emission. The host galaxies of our 6C subsample are well described as de Vaucouleurs ellipticals, with typical scale sizes of ~10kpc. This is comparable to the host galaxies of low-z radio sources of similar powers, and also the more powerful 3CR sources at the same redshift. The contribution of nuclear point source emission is also comparable, regardless of radio power. The 6C alignment effect is remarkably similar to that seen around more powerful 3CR sources at the same redshift in terms of extent and degree of alignment with the radio source axis, although it is generally less luminous. The bright, knotty features observed in the case of the z~1 3CR sources are far less frequent in our 6C subsample; neither do we observe such strong evidence for evolution in the strength of the alignment effect with radio source size/age. However, we do find a very strong link between the most extreme alignment effects and emission line region properties indicative of shocks, regardless of source size/age or power. In general, the 6C alignment effect is still considerably stronger than that seen around lower redshift galaxies of similar radio powers. (abridged)Comment: 23 pages, 15 figures, accepted for publication in MNRAS. See http://www.mrao.cam.ac.uk/~kji/MorphPaper/ for version of paper with full resolution images of Figs 1-1

    HST and UKIRT imaging observations of z ~ 1 6C radio galaxies - I. The data

    Full text link
    The results of Hubble Space Telescope and UKIRT imaging observations are presented for a sample of 11 6C radio galaxies with redshifts 0.85 < z < 1.5. The observations of the 6C sources reveal a variety of different features, similar to those observed around the higher luminosity of the aligned emission appears less extreme in the case of the 6C radio galaxies. For both samples, the aligned emission clearly cannot be explained by a single emission mechanism; line emission and related nebular continuum emission, however, often provide a significant contribution to the aligned emission.Comment: 17 pages, 11 figures (figs 3,6,11 low resolution - full resolution images can be obtained from http://www.mrao.cam.ac.uk/~kji/ImagingFigs/). Accepted for publication in MNRA

    Deep spectroscopy of z~1 6C radio galaxies - II. Breaking the redshift-radio power degeneracy

    Get PDF
    The results of a spectroscopic analysis of 3CR and 6C radio galaxies at redshift z~1 are contrasted with the properties of lower redshift radio galaxies, chosen to be matched in radio luminosity to the 6C sources studied at z~1, thus enabling the P-z degeneracy to be broken. Partial rank correlations and principal component analysis have been used to determine which of z and P are the critical parameters underlying the observed variation of the ionization state andd kinematics of the emission line gas. [OII]/H-beta is shown to be a useful ionization mechanism diagnostic. Statistical analysis of the data shows that the ionization state of the emission line gas is strongly correlated with radio power, once the effects of other parameters are removed. No dependence of ionization state on z is observed, implying that the ionization state of the emission line gas is solely a function of the AGN properties rather than the hostt galaxy and/or environment. Statistical analysis of the kinematic properties of the emission line gas shows that these are strongly correlated independently withh both P and z. The correlation with redshift is the stronger of the two, suggesting that host galaxy composition or environment may play a role in producing the less extreme gas kinematics observed in the emission line regions of low redshift galaxies. For both the ionization and kinematic properties of thee galaxies, the independent correlations observed with radio size are strongest. Radio source age is a determining factor for the extended emission line regions.Comment: 10 pages, 5 figures, accepted for publication in MNRA

    Consequence of reputation in an open-ended Naming Game

    Full text link
    We study a modified version of the Naming Game, a recently introduced model which describes how shared vocabulary can emerge spontaneously in a population without any central control. In particular, we introduce a new mechanism that allows a continuous interchange with the external inventory of words. A novel playing strategy, influenced by the hierarchical structure that individuals' reputation defines in the community, is implemented. We analyze how these features influence the convergence times, the cognitive efforts of the agents and the scaling behavior in memory and time.Comment: 6 pages, 6 figure

    Dust in 3C324

    Get PDF
    The results of a deep submillimetre observation using SCUBA of the powerful radio galaxy 3C324, at redshift z=1.206, are presented. At 850 microns, emission from the location of the host radio galaxy is marginally detected at the 4.2 sigma level, 3.01 +/- 0.72 mJy, but there is no detection of emission at 450 microns to a 3 sigma limit of 21 mJy. A new 32 GHz radio observation using the Effelsberg 100m telescope confirms that the sub-millimetre signal is not associated with synchrotron emission. These observations indicate that both the mass of warm dust within 3C324, and the star formation rate, lie up to an order of magnitude below the values recently determined for radio galaxies at z = 3 to 4. The results are compared with dust masses and star formation rates derived in other ways for 3C324.Comment: 5 pages LaTeX, including 1 figure. Accepted for publication in MNRA

    No dependence of radio properties of brightest group galaxies on the luminosity gap

    Get PDF
    We study the radio and optical properties of the brightest group galaxies (BGGs) in a sample of galaxy groups from the SDSS DR7. The luminosity difference between the BGG and the second ranked galaxy in the group (known as the luminosity, or magnitude, gap) has been used as a probe for the level of galaxy interaction for the BGG within the group. We study the properties of BGGs with magnitude gaps in the range 0-2.7 magnitudes, in order to investigate any relation between luminosity gap and the radio properties of the BGG. In order to eliminate selection biases, we ensure that all variations in stellar mass are accounted for. We then confirm that, at fixed stellar mass, there are no significant variations in the optical properties of the BGGs over the full range of luminosity gaps studied. We compare these optical results with the EAGLE hydrodynamical simulations and find broad consistency with the observational data. Using EAGLE we also confirm that no trends begin to arise in the simulated data at luminosity gaps beyond our observational limits. Finally, we find that, at fixed stellar mass, the fraction of BGGs that are radio-loud also shows no trends as a function of luminosity gap. We examine how the BGG offset from the center of group may affect the radio results and find no significant trend for the fraction of radio-loud BGGs with magnitude gap in either the BGG samples with greater or less than 100kpc offset from the center of group.Comment: Accepted for publication in A

    Conventions spreading in open-ended systems

    Full text link
    We introduce a simple open-ended model that describes the emergence of a shared vocabulary. The ordering transition toward consensus is generated only by an agreement mechanism. This interaction defines a finite and small number of states, despite each individual having the ability to invent an unlimited number of new words. The existence of a phase transition is studied by analyzing the convergence times, the cognitive efforts of the agents and the scaling behavior in memory and timeComment: 11 pages, 5 figure

    Continuum surveys with LOFAR and synergy with future large surveys in the 1-2 GHz band

    Full text link
    Radio astronomy is entering the era of large surveys. This paper describes the plans for wide surveys with the LOw Frequency ARray (LOFAR) and their synergy with large surveys at higher frequencies (in particular in the 1-2 GHz band) that will be possible using future facilities like Apertif or ASKAP. The LOFAR Survey Key Science Project aims at conducting large-sky surveys at 15, 30, 60, 120 and 200 MHz taking advantage of the wide instantaneous field of view and of the unprecedented sensitivity of this instrument. Four topics have been identified as drivers for these surveys covering the formation of massive galaxies, clusters and black holes using z>6 radio galaxies as probes, the study of the intercluster magnetic fields using diffuse radio emission and Faraday rotation measures in galaxy clusters as probes and the study of star formation processes in the early Universe using starburst galaxies as probes. The fourth topic is the exploration of new parameter space for serendipitous discovery taking advantage of the new observational spectral window open up by LOFAR. Here, we briefly discuss the requirements of the proposed surveys to address these (and many others!) topics as well as the synergy with other wide area surveys planned at higher frequencies (and in particular in the 1-2 GHz band) with new radio facilities like ASKAP and Apertif. The complementary information provided by these surveys will be crucial for detailed studies of the spectral shape of a variety of radio sources (down to sub-mJy sources) and for studies of the ISM (in particular HI and OH) in nearby galaxies.Comment: to appear in the proceedings of "Panoramic Radio Astronomy: Wide-field 1-2 GHz research on galaxy evolution", G. Heald and P. Serra eds., 8 pages, 3 figure
    corecore