543 research outputs found
Efficient simulation of time- and frequency-resolved four-wave-mixing signals with a multiconfigurational Ehrenfest approach
We have extended the multiconfigurational Ehrenfest approach to the simulation of four-wave-mixing signals of systems involving multiple electronic and vibrational degrees of freedom. As an illustration, we calculate signals of three widely used spectroscopic techniques, time- and frequency-resolved fluorescence spectroscopy, transient absorption spectroscopy, and two-dimensional (2D) electronic spectroscopy, for a two-electronic-state, twenty-four vibrational-mode conical intersection model. It has been shown that all these three spectroscopic signals characterize fast population transfer from the higher excited electronic state to the lower excited electronic state. While the time- and frequency-resolved spectrum maps the wave packet propagation exclusively on the electronically excited states, the transient absorption and 2D electronic spectra reflect the wave packet dynamics on both electronically excited states and the electronic ground state. Combining trajectory-guided Gaussian basis functions and the nonlinear response function formalism, the present approach provides a promising general technique for the applications of various Gaussian basis methods to the calculations of four-wave-mixing spectra of polyatomic molecules
Role of the Subunits Interactions in the Conformational Transitions in Adult Human Hemoglobin: an Explicit Solvent Molecular Dynamics Study
Hemoglobin exhibits allosteric structural changes upon ligand binding due to
the dynamic interactions between the ligand binding sites, the amino acids
residues and some other solutes present under physiological conditions. In the
present study, the dynamical and quaternary structural changes occurring in two
unligated (deoxy-) T structures, and two fully ligated (oxy-) R, R2 structures
of adult human hemoglobin were investigated with molecular dynamics. It is
shown that, in the sub-microsecond time scale, there is no marked difference in
the global dynamics of the amino acids residues in both the oxy- and the deoxy-
forms of the individual structures. In addition, the R, R2 are relatively
stable and do not present quaternary conformational changes within the time
scale of our simulations while the T structure is dynamically more flexible and
exhibited the T\rightarrow R quaternary conformational transition, which is
propagated by the relative rotation of the residues at the {\alpha}1{\beta}2
and {\alpha}2{\beta}1 interface.Comment: Reprinted (adapted) with permission from J. Phys. Chem. B
DOI:10.1021/jp3022908. Copyright (2012) American Chemical Societ
A False Start in the Race Against Doping in Sport: Concerns With Cycling’s Biological Passport
Professional cycling has suffered from a number of doping scandals. The sport’s governing bodies have responded by implementing an aggressive new antidoping program known as the biological passport. Cycling’s biological passport marks a departure from traditional antidoping efforts, which have focused on directly detecting prohibited substances in a cyclist’s system. Instead, the biological passport tracks biological variables in a cyclist’s blood and urine over time, monitoring for fluctuations that are thought to indirectly reveal the effects of doping. Although this method of indirect detection is promising, it also raises serious legal and scientific concerns. Since its introduction, the cycling community has debated the reliability of indirect biological-passport evidence and the clarity, consistency, and transparency of its use in proving doping violations. Such uncertainty undermines the legitimacy of finding cyclists guilty of doping based on this indirect evidence alone. Antidoping authorities should address these important concerns before continuing to pursue doping sanctions against cyclists solely on the basis of their biological passports
CMOS pixel sensor development: a fast read-out architecture with integrated zero suppression
International audienceCMOS Monolithic Active Pixel Sensors (MAPS) have demonstrated their strong potential for tracking devices, particularly for flavour tagging. They are foreseen to equip several vertex detectors and beam telescopes. Most applications require high read-out speed, which imposes sensors to feature digital output with integrated zero suppression. The most recent development of MAPS at IPHC and IRFU addressing this issue will be reviewed. The design architecture, combining pixel array, column-level discriminators and zero suppression circuits, will be presented. Each pixel features a preamplifier and a correlated double sampling (CDS) micro-circuit reducing the temporal and fixed pattern noises. The sensor is fully programmable and can be monitored. It will equip experimental apparatus starting data taking in 2009/2010
Intramolecular additions of various π-nucleophiles to chemoselectively activated amides and application to the synthesis of (±)-tashiromine
Abstract: Vilsmeier-Haack type cyclizations proved to be particularly efficient for generating parts of the polycyclic
cores of many alkaloids, although only monocyclizations have so far been reported. With the goal of
rapidly and efficiently constructing polycyclic alkaloids, we decided to exploit the Vilsmeier-Haack
reaction by utilizing iminium ions successively generated and trapped with tethered nucleophiles. To
develop such a strategy, we had to set the first cyclization. This constitutes a great challenge in itself
because amide activation conditions are usually not compatible with tethered nucleophiles, except for
indoles and aromatic rings which have already been reported. This paper describes the comprehensive
study of intramolecular addition of silyl enol ethers, allylsilanes, and enamines to chemoselectively activated
formamides, aliphatic amides, and lactams. Good to excellent yields were obtained for the 5-exo, 6-exo,
and 6-endo modes of cyclization. Moreover, we demonstrated that the species in solution after the
cyclization are iminium ions. This is highly encouraging for the development of bis-cyclization strategies.
An expeditious total synthesis of (()-tashiromine is also reported
Ultrafast All-Polymer Paper-Based Batteries
Conducting polymers for battery applications have been subject to numerous investigations during the last two decades. However, the functional charging rates and the cycling stabilities have so far been found to be insufficient for practical applications. These shortcomings can, at least partially, be explained by the fact that thick layers of the conducting polymers have been used to obtain sufficient capacities of the batteries. In the present letter, we introduce a novel nanostructured high-surface area electrode material for energy storage applications composed of cellulose fibers of algal origin individually coated with a 50 nm thin layer of polypyrrole. Our results show the hitherto highest reported charge capacities and charging rates for an all polymer paper-based battery. The composite conductive paper material is shown to have a specific surface area of 80 m2 g-1 and batteries based on this material can be charged with currents as high as 600 mA cm-2 with only 6 % loss in capacity over 100 subsequent charge and discharge cycles. The aqueous-based batteries, which are entirely based on cellulose and polypyrrole and exhibit charge capacities between 25 and 33 mAh g-1 or 38-50 mAh g-1 per weight of the active material, open up new possibilities for the production of environmentally friendly, cost efficient, up-scalable and lightweight energy storage systems. There is currently a great interest in the development of thin, flexible, lightweight, and environmentally friendly batteries and supercapacitors.1 In this process, the preparation of novel redox polymer and electronically conducting polymer-base
A ten thousand frames per second readout MAPS for the EUDET beam telescope
Designed and manufactured in a commercial CMOS 0.35 μm OPTO process for equipping the EUDET beam telescope, MIMOSA26 is the first reticule size pixel sensor with digital output and integrated zero suppression. It features a matrix of pixels with 576 rows and 1152 columns, covering an active area of ~224 mm2. A single point resolution of about 4 μm was obtained with a pixel pitch of 18.4 μm. Its architecture allows a fast readout frequency of ~10 k frames/s. The paper describes the chip design, test and major characterisation outcome
- …