7,593 research outputs found

    Electric field distortions in structures of the twist bend nematic (NTB) phase of a bent-core liquid crystal

    Full text link
    Dielectric spectroscopy of a twist bend nematic phase of an achiral bent core liquid crystalline compound under DC bias is used to investigate its response to electric field. Two collective relaxation processes are revealed, these are assigned to distortions of helicoidal structure by the external bias field. Frequency of the mode depends primarily on the helicoidal angle and has anomalous, softening- like behaviour at the nematic to the twist bend nematic transition. A coupling of dielectric anisotropy with electric field gives rise to a new equilibrium periodic structure in the time scale involved. The modulus of the wave vector gradually vanishes on increasing the bias field (except for the initial behaviour, which is just the opposite). Transition from the twist bend to the splay bend structure is clearly observed by a sudden drop in the frequency of this mode, which decreases almost linearly with increasing field. Results agree with predictions from current models for the periodically distorted a twist bend nematic phase.Comment: 14 PAGES, 7 FIGURES, submitted to Physical Review Letter

    Coccolithophore fluxes in the open tropical North Atlantic: influence of thermocline depth, Amazon water, and Saharan dust

    Get PDF
    Coccolithophores are calcifying phytoplankton and major contributors to both the organic and inorganic oceanic carbon pumps. Their export fluxes, species composition, and seasonal patterns were determined in two sediment trap moorings (M4 at 12 degrees N, 49 degrees W and M2 at 14 degrees N, 37 degrees W) collecting settling particles synchronously from October 2012 to November 2013 at 1200 m of water depth in the open equatorial North Atlantic. The two trap locations showed a similar seasonal pattern in total coccolith export fluxes and a predominantly tropical coccolithophore settling assemblage. Species fluxes were dominated throughout the year by lower photic zone (LPZ) taxa (Florisphaera profunda, Gladiolithus flabellatus) but also included upper photic zone (UPZ) taxa (Umbellosphaera spp., Rhabdosphaera spp., Umbilicosphaera spp., Helicosphaera spp.). The LPZ flora was most abundant during fall 2012, whereas the UPZ flora was more important during summer. In spite of these similarities, the western part of the study area produced persistently higher fluxes, averaging 241 x 10(7) +/- 76 x 10(7) coccoliths m(-2) d(-1) at station M4 compared to only 66 x 10(7) +/- 31 x 10(7) coccoliths m(-2) d(-1) at station M2. Higher fluxes at M4 were mainly produced by the LPZ species, favoured by the westward deepening of the thermocline and nutricline. Still, most UPZ species also contributed to higher fluxes, reflecting enhanced productivity in the western equatorial North Atlantic. Such was the case of two marked flux peaks of the more opportunistic species Gephyrocapsa muellerae and Emiliania huxleyi in January and April 2013 at M4, indicating a fast response to the nutrient enrichment of the UPZ, probably by wind-forced mixing. Later, increased fluxes of G. oceanica and E. huxleyi in October-November 2013 coincided with the occurrence of Amazon-River-affected surface waters. Since the spring and fall events of 2013 were also accompanied by two dust flux peaks, we propose a scenario in which atmospheric dust also provided fertilizing nutrients to this area. Enhanced surface buoyancy associated with the river plume indicates that the Amazon acted not only as a nutrient source, but also as a surface density retainer for nutrients supplied from the atmosphere. Nevertheless, lower total coccolith fluxes during these events compared to the maxima recorded in November 2012 and July 2013 indicate that transient productivity by opportunistic species was less important than "background" tropical productivity in the equatorial North Atlantic. This study illustrates how two apparently similar sites in the tropical open ocean actually differ greatly in ecological and oceanographic terms. The results presented here provide valuable insights into the processes governing the ecological dynamics and the downward export of coccolithophores in the tropical North Atlantic.Netherlands Organization for Scientific Research (NWO) [822.01.008]; European Research Council (ERC) [311152]; University of Bremen; European Union [600411]info:eu-repo/semantics/publishedVersio

    Coupling JOREK and STARWALL for Non-linear Resistive-wall Simulations

    Get PDF
    The implementation of a resistive-wall extension to the non-linear MHD-code JOREK via a coupling to the vacuum-field code STARWALL is presented along with first applications and benchmark results. Also, non-linear saturation in the presence of a resistive wall is demonstrated. After completion of the ongoing verification process, this code extension will allow to perform non-linear simulations of MHD instabilities in the presence of three-dimensional resistive walls with holes for limited and X-point plasmas.Comment: Contribution for "Theory Of Fusion Plasmas, Joint Varenna - Lausanne International Workshop, Villa Monastero, Varenna, Italy (27.-31.8.2012)", accepted for publication in Journal of Physics Conference Serie

    funcX: A Federated Function Serving Fabric for Science

    Full text link
    Exploding data volumes and velocities, new computational methods and platforms, and ubiquitous connectivity demand new approaches to computation in the sciences. These new approaches must enable computation to be mobile, so that, for example, it can occur near data, be triggered by events (e.g., arrival of new data), be offloaded to specialized accelerators, or run remotely where resources are available. They also require new design approaches in which monolithic applications can be decomposed into smaller components, that may in turn be executed separately and on the most suitable resources. To address these needs we present funcX---a distributed function as a service (FaaS) platform that enables flexible, scalable, and high performance remote function execution. funcX's endpoint software can transform existing clouds, clusters, and supercomputers into function serving systems, while funcX's cloud-hosted service provides transparent, secure, and reliable function execution across a federated ecosystem of endpoints. We motivate the need for funcX with several scientific case studies, present our prototype design and implementation, show optimizations that deliver throughput in excess of 1 million functions per second, and demonstrate, via experiments on two supercomputers, that funcX can scale to more than more than 130000 concurrent workers.Comment: Accepted to ACM Symposium on High-Performance Parallel and Distributed Computing (HPDC 2020). arXiv admin note: substantial text overlap with arXiv:1908.0490

    Non-linear Simulations of MHD Instabilities in Tokamaks Including Eddy Current Effects and Perspectives for the Extension to Halo Currents

    Full text link
    The dynamics of large scale plasma instabilities can strongly be influenced by the mutual interaction with currents flowing in conducting vessel structures. Especially eddy currents caused by time-varying magnetic perturbations and halo currents flowing directly from the plasma into the walls are important. The relevance of a resistive wall model is directly evident for Resistive Wall Modes (RWMs) or Vertical Displacement Events (VDEs). However, also the linear and non-linear properties of most other large-scale instabilities may be influenced significantly by the interaction with currents in conducting structures near the plasma. The understanding of halo currents arising during disruptions and VDEs, which are a serious concern for ITER as they may lead to strong asymmetric forces on vessel structures, could also benefit strongly from these non-linear modeling capabilities. Modeling the plasma dynamics and its interaction with wall currents requires solving the magneto-hydrodynamic (MHD) equations in realistic toroidal X-point geometry consistently coupled with a model for the vacuum region and the resistive conducting structures. With this in mind, the non-linear finite element MHD code JOREK has been coupled with the resistive wall code STARWALL, which allows to include the effects of eddy currents in 3D conducting structures in non-linear MHD simulations. This article summarizes the capabilities of the coupled JOREK-STARWALL system and presents benchmark results as well as first applications to non-linear simulations of RWMs, VDEs, disruptions triggered by massive gas injection, and Quiescent H-Mode. As an outlook, the perspectives for extending the model to halo currents are described.Comment: Proceeding paper for Theory of Fusion Plasmas (Joint Varenna-Lausanne International Workshop), Varenna, Italy (September 1-5, 2014); accepted for publication in: to Journal of Physics: Conference Serie

    Dielectric response of electric-field distortions of the twist-bend nematic phase for LC dimers

    Get PDF
    Wide band dielectric spectroscopy of bent-shaped achiral liquid-crystal dimers 1′′-n′′-bis(4-cyanobiphenyl-4′-yl) n-alkanes (CBnCB n = 7, 9, 11) has been investigated in a frequency range 0.1 Hz–100 MHz using planar-aligned cells of sample thicknesses ranging from 2 to 10 (μm) over a temperature range that covers both nematic and twist bend nematic phases. Two peaks in the dielectric spectrum in the higher frequency range are assigned to the molecular relaxation processes. The peak at the highest frequency, ∼40 to 80 MHz, is assigned to an internal precessional rotation of a single unit of the dimer around the director. The mode in the next lower frequency range of 2–10 MHz is assigned to the spinning rotation of the dimer around its long axis. This involves fluctuations of the dipole moment of the bent-shaped conformation that is directed along its arrow direction of the bow shape formed by the dimer. The peak in the frequency range 100 kHz–1 MHz can be assigned to the collective fluctuations of the local director with reference to the helical axis of the NTB structure. The dependence of its frequency on temperature is reminiscent of the soft mode observed at the SmA∗ to SmC∗ phase transition. This result clearly corresponds to the electroclinic effect—the response of the director to the applied electric field in an electro-optic experiment. The lowest frequency mode, observed in the frequency range of 0.1 Hz–100 Hz, is identified with the Goldstone mode. This mode is concerned with the long range azimuthal angle fluctuations of the local director. This leads to an alternating compression and expansion of the periodic structure of the NTB phase

    A concept of an automated function control for ambient aerosol measurements using mobility particle size spectrometers

    Get PDF
    An automated function control unit was developed to regularly check the ambient particle number concentration derived from a mobility particle size spectrometer as well as its zero-point behaviour. The function control allows unattended quality assurance experiments at remote air quality monitoring or research stations under field conditions. The automated function control also has the advantage of being able to get a faster system stability response than the recommended on-site comparisons with reference instruments. The method is based on a comparison of the total particle number concentration measured by a mobility particle size spectrometer and a condensation particle counter while removing diffusive particles smaller than 20 nm in diameter. In practice, the small particles are removed by a set of diffusion screens, as traditionally used in a diffusion battery. Another feature of the automated function control is to check the zero-point behaviour of the ambient aerosol passing through a high-efficiency particulate air (HEPA) filter. <br><br> The performance of the function control is illustrated with the aid of a 1-year data set recorded at Annaberg-Buchholz, a station in the Saxon air quality monitoring network. During the period of concern, the total particle number concentration derived from the mobility particle size spectrometer slightly overestimated the particle number concentration recorded by the condensation particle counter by 2 % (grand average). Based on our first year of experience with the function control, we developed tolerance criteria that allow a performance evaluation of a tested mobility particle size spectrometer with respect to the total particle number concentration. We conclude that the automated function control enhances the quality and reliability of unattended long-term particle number size distribution measurements. This will have beneficial effects for intercomparison studies involving different measurement sites, and help provide a higher data accuracy for cohort health and climate research studies

    Precision spectral manipulation of optical pulses using a coherent photon echo memory

    Full text link
    Photon echo schemes are excellent candidates for high efficiency coherent optical memory. They are capable of high-bandwidth multi-pulse storage, pulse resequencing and have been shown theoretically to be compatible with quantum information applications. One particular photon echo scheme is the gradient echo memory (GEM). In this system, an atomic frequency gradient is induced in the direction of light propagation leading to a Fourier decomposition of the optical spectrum along the length of the storage medium. This Fourier encoding allows precision spectral manipulation of the stored light. In this letter, we show frequency shifting, spectral compression, spectral splitting, and fine dispersion control of optical pulses using GEM

    Paper Session I-C - Technology Advances and Developments in Low Power Gallium Arsenide for Space Applications

    Get PDF
    The evolution of gallium arsenide (GaAs) technology has developed to the point where it is quite suited for low power operation in space. The preliminary requirements for space-based integrated circuit applications are reviewed, and evidence that a GaAs technology known as complementary heterostructure field effect transistors (CHFETs) has proven to meet the demands of the space environment is presented. Further examples of how the complementary GaAs technology has demonstrated the potential for operation in the Gigahertz frequency range using power supply voltages at or below 2.5 Volts are presented. The analog and digital technological needs for space applications are identified and being met by complementary GaAs technologies when compared to commercial-off-the-shelf (COTS) electronics. Emphasis on the manufacturing costs of low power GaAs technologies when compared to those associated with COTS modified for space applications is addressed. Finally, information by both the Air Force and commercial sector concerning the need for low power GaAs technology insertion into future space-based systems is provided
    • …
    corecore