4,042 research outputs found

    X-Ray Determination of the Variable Rate of Mass Accretion onto TW Hydrae

    Get PDF
    Diagnostics of electron temperature (T_e), electron density (n_e), and hydrogen column density (N_H) from the Chandra High Energy Transmission Grating spectrum of He-like Ne IX in TW Hydrae (TW Hya), in conjunction with a classical accretion model, allow us to infer the accretion rate onto the star directly from measurements of the accreting material. The new method introduces the use of the absorption of Ne IX lines as a measure of the column density of the intervening, accreting material. On average, the derived mass accretion rate for TW Hya is 1.5 x 10^{-9} M_{\odot} yr^{-1}, for a stellar magnetic field strength of 600 Gauss and a filling factor of 3.5%. Three individual Chandra exposures show statistically significant differences in the Ne IX line ratios, indicating changes in N_H, T_e, and n_e by factors of 0.28, 1.6, and 1.3, respectively. In exposures separated by 2.7 days, the observations reported here suggest a five-fold reduction in the accretion rate. This powerful new technique promises to substantially improve our understanding of the accretion process in young stars

    Probing Elemental Abundances in SNR 1987A Using XMM-Newton

    Full text link
    We report on the latest (2007 Jan) observations of supernova remnant (SNR) 1987A from the XMM-Newton mission. Since the 2003 May observations of Haberl et al. (2006), 11 emission lines have experienced increases in flux by factors ~ 3 to 10, with the 775 eV line of O VIII showing the greatest increase; we have observed 6 lines of Fe XVII and Fe XVIII previously unreported by XMM-Newton. A two-shock model representing plasmas in non-equilibrium ionization is fitted to the EPIC-pn spectra, yielding temperatures of ~ 0.4 and ~ 3 keV, as well as elemental abundances for N, O, Ne, Mg, Si, S and Fe. We demonstrate that the abundance ratio of N and O can be constrained to less than ~20% accuracy. Within the same confidence interval, the same analysis suggests that the C+N+O abundance varies from ~ 1.1 to 1.4 X 10^-4. Normalizing our obtained abundances by the Large Magellanic Cloud (LMC) values of Hughes, Hayashi & Koyama (1998), we find that O, Ne, Mg and Fe are under-abundant, while Si and S are over-abundant, consistent with the findings of Aschenbach (2007). Such a result has implications for both the single-star and binary accretion/merger models for the progenitor of SNR 1987A. In the context of the binary merger scenario proposed by Morris & Podsiadlowski (2006, 2007), material forming the inner, equatorial ring was expelled after the merger, implying that either our derived Fe abundance is inconsistent with typical LMC values or that iron is under-abundant at the site of the progenitor star of SNR 1987A.Comment: 14 pages, 10 diagrams (2 omitted). Accepted by Ap

    X-ray to NIR emission from AA Tauri during the dim state - Occultation of the inner disk and gas-to-dust ratio of the absorber

    Full text link
    AA Tau is a well-studied, nearby classical T Tauri star, which is viewed almost edge-on. A warp in its inner disk periodically eclipses the central star, causing a clear modulation of its optical light curve. The system underwent a major dimming event beginning in 2011 caused by an extra absorber, which is most likely associated with additional disk material in the line of sight toward the central source. We present new XMM-Newton X-ray, Hubble Space Telescope FUV, and ground based optical and near-infrared data of the system obtained in 2013 during the long-lasting dim phase. The line width decrease of the fluorescent H2_2 disk emission shows that the extra absorber is located at r>1r>1\,au. Comparison of X-ray absorption (NHN_H) with dust extinction (AVA_V), as derived from measurements obtained one inner disk orbit (eight days) after the X-ray measurement, indicates that the gas-to-dust ratio as probed by the NHN_H to AVA_V ratio of the extra absorber is compatible with the ISM ratio. Combining both results suggests that the extra absorber, i.e., material at r>1r>1\,au, has no significant gas excess in contrast to the elevated gas-to-dust ratio previously derived for material in the inner region (0.1\lesssim0.1\,au).Comment: 16 pages, 12 figures, accepted by A&

    Studies for the radioactive waste management of copular air filters

    Get PDF

    Huygens' Principle for the Klein-Gordon equation in the de Sitter spacetime

    Full text link
    In this article we prove that the Klein-Gordon equation in the de Sitter spacetime obeys the Huygens' principle only if the physical mass mm of the scalar field and the dimension n2n\geq 2 of the spatial variable are tied by the equation m2=(n21)/4m^2=(n^2-1)/4 . Moreover, we define the incomplete Huygens' principle, which is the Huygens' principle restricted to the vanishing second initial datum, and then reveal that the massless scalar field in the de Sitter spacetime obeys the incomplete Huygens' principle and does not obey the Huygens' principle, for the dimensions n=1,3n=1,3, only. Thus, in the de Sitter spacetime the existence of two different scalar fields (in fact, with m=0 and m2=(n21)/4m^2=(n^2-1)/4 ), which obey incomplete Huygens' principle, is equivalent to the condition n=3n=3 (in fact, the spatial dimension of the physical world). For n=3n=3 these two values of the mass are the endpoints of the so-called in quantum field theory the Higuchi bound. The value m2=(n21)/4m^2=(n^2-1)/4 of the physical mass allows us also to obtain complete asymptotic expansion of the solution for the large time. Keywords: Huygens' Principle; Klein-Gordon Equation; de Sitter spacetime; Higuchi Boun

    50GHz Ge waveguide electro-absorption modulator integrated in a 220nm SOI photonics platform

    Get PDF
    We report waveguide-integrated Ge electro-absorption modulators operating at 1615nm wavelength with 3dB bandwidth beyond 50GHz and a capacitance of 10fF, A 2V voltage swing enables 4.6dB DC extinction ratio for 4.1dB insertion loss

    Nonlinear multidimensional cosmological models with form fields: stabilization of extra dimensions and the cosmological constant problem

    Full text link
    We consider multidimensional gravitational models with a nonlinear scalar curvature term and form fields in the action functional. In our scenario it is assumed that the higher dimensional spacetime undergoes a spontaneous compactification to a warped product manifold. Particular attention is paid to models with quadratic scalar curvature terms and a Freund-Rubin-like ansatz for solitonic form fields. It is shown that for certain parameter ranges the extra dimensions are stabilized. In particular, stabilization is possible for any sign of the internal space curvature, the bulk cosmological constant and of the effective four-dimensional cosmological constant. Moreover, the effective cosmological constant can satisfy the observable limit on the dark energy density. Finally, we discuss the restrictions on the parameters of the considered nonlinear models and how they follow from the connection between the D-dimensional and the four-dimensional fundamental mass scales.Comment: 21 pages, LaTeX2e, minor changes, improved references, fonts include
    corecore