research

Huygens' Principle for the Klein-Gordon equation in the de Sitter spacetime

Abstract

In this article we prove that the Klein-Gordon equation in the de Sitter spacetime obeys the Huygens' principle only if the physical mass mm of the scalar field and the dimension n2n\geq 2 of the spatial variable are tied by the equation m2=(n21)/4m^2=(n^2-1)/4 . Moreover, we define the incomplete Huygens' principle, which is the Huygens' principle restricted to the vanishing second initial datum, and then reveal that the massless scalar field in the de Sitter spacetime obeys the incomplete Huygens' principle and does not obey the Huygens' principle, for the dimensions n=1,3n=1,3, only. Thus, in the de Sitter spacetime the existence of two different scalar fields (in fact, with m=0 and m2=(n21)/4m^2=(n^2-1)/4 ), which obey incomplete Huygens' principle, is equivalent to the condition n=3n=3 (in fact, the spatial dimension of the physical world). For n=3n=3 these two values of the mass are the endpoints of the so-called in quantum field theory the Higuchi bound. The value m2=(n21)/4m^2=(n^2-1)/4 of the physical mass allows us also to obtain complete asymptotic expansion of the solution for the large time. Keywords: Huygens' Principle; Klein-Gordon Equation; de Sitter spacetime; Higuchi Boun

    Similar works

    Full text

    thumbnail-image

    Available Versions