109 research outputs found

    Enzymatically crosslinked Tyramine-Gellan gum hydrogels as drug delivery system for rheumatoid arthritis treatment

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by joint synovial inflammation, as well as cartilage and bone tissue destruction. Current strategies for the treatment of RA can reduce joint inflammation, but the treatment options still represent stability concerns since they are not sufficient and present a fast clearing. Thus, several drug delivery systems (DDS) have been advanced to tackle this limitation. Injectable gellan gum (GG) hydrogels, reduced by physical crosslinking methods, also being proposed as DDS, but this kind of crosslinking can produce hydrogels that become weaker in physiological conditions. Nevertheless, enzymatic crosslinking emerged as an alternative to increase mechanical strength, which can be adjusted by the degree of enzymatic crosslinking. In this study, tyramine-modified gellan gum (Ty-GG) hydrogels were developed via horseradish peroxidase (HRP) crosslinking; and betamethasone was encapsulated within, to increase the specificity and safety in the treatment of patients with RA. Physicochemical results showed that it was possible to modify GG with tyramine, with a degree of substitution of approximately 30%. They showed high mechanical strength and resistance, presenting a controlled betamethasone release profile over time. Ty-GG hydrogels also exhibited no cytotoxic effects and do not negatively affected the metabolic activity and proliferation of chondrogenic primary cells. Furthermore, the main goal was achieved since betamethasone-loaded Ty-GG hydrogels demonstrated to have a more effective therapeutic effect when compared with the administration of betamethasone alone. Therefore, the developed Ty-GG hydrogels represent a promising DDS and a reliable alternative to traditional treatments in patients with RANorte2020 project (“NORTE-08-5369-FSE-000044”), REMIX project (G.A. 778078 — REMIX — H2020-MSCA-RISE-2017), and Gilson Lab, Chonbuk National University, Republic of Korea. The FCT distinction attributed to J. Miguel Oliveira under the Investigator FCT program (IF/01285/2015) is also greatly acknowledged. C. Gonçalves also wish to acknowledge FCT for supporting her research (No. SFRH/BPD/94277/2013

    Not all shellfish "allergy" is allergy!

    Get PDF
    The popularity of shellfish has been increasing worldwide, with a consequent increase in adverse reactions that can be allergic or toxic. The approximate prevalence of shellfish allergy is estimated at 0.5-2.5% of the general population, depending on degree of consumption by age and geographic regions. The manifestations of shellfish allergy vary widely, but it tends to be more severe than most other food allergens

    Epithelial Neutrophil-Activating Peptide (ENA-78), Acute Coronary Syndrome Prognosis, and Modulatory Effect of Statins

    Get PDF
    Endothelial inflammation with chemokine involvement contributes to acute coronary syndromes (ACS). We tested the hypothesis that variation in the chemokine gene CXCL5, which encodes epithelial neutrophil-activating peptide (ENA-78), is associated with ACS prognosis. We also investigated whether statin use, a potent modulator of inflammation, modifies CXCL5's association with outcomes and characterized the in vitro effect of atorvastatin on endothelial ENA-78 production. Using a prospective cohort of ACS patients (n = 704) the association of the CXCL5 −156 G>C polymorphism (rs352046) with 3-year all-cause mortality was estimated with hazard ratios (HR). Models were stratified by genotype and race. To characterize the influence of statins on this association, a statin*genotype interaction was tested. To validate ENA-78 as a statin target in inflammation typical of ACS, endothelial cells (HUVECs) were treated with IL-1ÎČ and atorvastatin with subsequent quantification of CXCL5 expression and ENA-78 protein concentrations. C/C genotype was associated with a 2.7-fold increase in 3-year all-cause mortality compared to G/G+G/C (95%CI 1.19–5.87; p = 0.017). Statins significantly reduced mortality in G/G individuals only (58% relative risk reduction; p = 0.0009). In HUVECs, atorvastatin dose-dependently decreased IL-1ÎČ-stimulated ENA-78 concentrations (p<0.0001). Drug effects persisted over 48 hours (p<0.01). CXCL5 genotype is associated with outcomes after ACS with potential statin modification of this effect. Atorvastatin lowered endothelial ENA-78 production during inflammation typical of ACS. These findings implicate CXCL5/ENA-78 in ACS and the statin response

    Peritoneal changes due to laparoscopic surgery

    Get PDF
    Item does not contain fulltextBACKGROUND: Laparoscopic surgery has been incorporated into common surgical practice. The peritoneum is an organ with various biologic functions that may be affected in different ways by laparoscopic and open techniques. Clinically, these alterations may be important in issues such as peritoneal metastasis and adhesion formation. METHODS: A literature search using the Pubmed and Cochrane databases identified articles focusing on the key issues of laparoscopy, peritoneum, inflammation, morphology, immunology, and fibrinolysis. Results : Laparoscopic surgery induces alterations in the peritoneal integrity and causes local acidosis, probably due to peritoneal hypoxia. The local immune system and inflammation are modulated by a pneumoperitoneum. Additionally, the peritoneal plasmin system is inhibited, leading to peritoneal hypofibrinolysis. CONCLUSION: Similar to open surgery, laparoscopic surgery affects both the integrity and biology of the peritoneum. These observations may have implications for various clinical conditions.1 januari 201

    Measurement of melatonin in body fluids: Standards, protocols and procedures

    Get PDF
    Abstract: The circadian rhythm of melatonin in saliva or plasma, or of the melatonin metabolite 6‐ sulphatoxymelatonin in urine, is a defining feature of suprachiasmatic nucleus function, the endogenous oscillatory pacemaker. These measurements are useful to evaluate problems related to the onset or offset of sleep and for assessing phase delays or advances of rhythms in entrained individuals. Additionally, they have become an important tool for psychiatric diagnosis, its use being recommended for phase typing in patients suffering from sleep and mood disorders. Thus, the development of sensitive and selective methods for the precise detection of melatonin in tissues and fluids of animals emerges as necessary. Due to its low concentration and the co‐existence of many other endogenous compounds in blood, the determination of melatonin has been an analytical challenge. This review discusses current methodologies employed for detection and quantification of melatonin in biological fluids and tissues

    Foam-Mat Freeze-Drying of Blueberry Juice by Using Trehalose-ÎČ-Lactoglobulin and Trehalose-Bovine Serum Albumin as Matrices

    Get PDF
    This study aimed to evaluate the effect of pure protein compounds and trehalose incorporated into blueberry juice for foam-mat freeze-drying on the foam and powder properties. Foam-mat freeze-drying (FMFD) of blueberry juice was tested at − 55 °C for 24 h. Matrices used were trehalose + ÎČ-lactoglobulin (T3BL1) and trehalose + bovine serum albumin (T3A1) and compared with maltodextrin + whey protein isolate (M3W1). Physicochemical properties of foam and powder, e.g., foam stability, foam density, moisture, rehydration time, color, particle morphology, total phenolic, and anthocyanins (total and individuals), were investigated. T3BL1 and T3A1 had more stable foam than M3W1. However, overrun of T3BL1 and T3A1 foamed were inferior to the M3W1 sample. The M3W1 sample recovered 79% powder (dry weight) and was superior to others. Rehydration time of powdered T3BL1 and T3A1, with bulk densities of 0.55–0.60 g cm−3, was the fastest (34–36 s). The blueberry powders of M3W1 showed more irregular particle size and shape, while the samples with trehalose and pure proteins generated particles of more uniform size with obvious pores. T3BL1 and T3A1 showed less redness (a*) values than the M3W1 product. All samples were considered pure red due to hue values < 90. M3W1 was superior in total phenolic content (TPC) and total monomeric anthocyanins (TMA) compared with both samples made with trehalose + ÎČ-lactoglobulin and trehalose+bovine serum albumin. Delphinidin-3-glucoside (Del3Gl) concentration was found to be higher in M3W1. Also, M3W1 had higher cyanidin-3-glucoside (Cyn3Gl) and malvidin-3-glucoside (Mal3Gl) concentration. M3W1 also prevented the degradation of these bioactive compounds better than the other FMFD samples. The use of pure proteins and trehalose as matrices in the FMFD process had little advantage compared with maltodextrin/whey protein isolate. Thus, maltodextrin/whey protein isolate seems an ideal matrix for the manufacture of FMFD blueberry

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/

    Cellular and molecular basis for endometriosis-associated infertility

    Full text link

    Measurement and Comparison of Glass Transition and Sticky Point Temperatures of Distillers Dried Grains with Solubles (DDGS) with Varying Condensed Distillers Solubles (CDS) and Drying Temperature Levels

    Get PDF
    Citation: Bhadra, R., K. Muthukumarappan, and K. A. Rosentrater. 2014. Measurement and Comparison of Glass Transition and Sticky Point Temperatures of Distillers Dried Grains with Solubles (DDGS) with Varying Condensed Distillers Solubles (CDS) and Drying Temperature Levels. Cereal Chemistry 91(4):406-413.Distillers dried grains with solubles (DDGS) is the main coproduct of the U.S. fuel ethanol industry and has significantly impacted the livestock feed markets in recent years. Particle agglomeration and subsequent flowability problems during storage and transport are often a hindrance, a nuisance, and expensive. This paper aims at characterizing the glass transition (Tg) and sticky point (Ts) temperatures of DDGS samples prepared with varying condensed distillers solubles (CDS) levels (10, 15, and 20%, wb), drying temperatures (100, 200, and 300°C), and moisture contents (0, 10, and 20%, db), and it discusses implications on DDGS flowability behavior. Distillers wet grains were combined with specified levels of CDS and dried in a convection-style laboratory oven to produce DDGS. Subsequently, predetermined amounts of water were added to the DDGS to achieve desired moisture content levels. To determine Tg (°C), a differential scanning calorimeter was used, whereas Ts (°C) was determined through a novel technique with a rheometer. Results indicated high correlations between observed Ts and observed Tg (R2 = 0.87) data for DDGS samples. Also, the empirical model for predicted Tg = f (drying temperature, CDS level, and moisture content) based on the Gordon–Taylor model showed favorable R2 (0.74). Stickiness of DDGS increased with an increase in moisture content, indicating flow problems resulting from moisture. It was found that drying temperatures and CDS levels each had significant effects on Tg and Ts as well
    • 

    corecore