1,114 research outputs found
A length scale for the superconducting Nernst signal above T in NbSi
We present a study of the Nernst effect in amorphous superconducting thin
films of NbSi. The field dependence of the Nernst coefficient
above T displays two distinct regimes separated by a field scale set by
the Ginzburg-Landau correlation length. A single function , with the
correlation length as its unique argument set either by the zero-field
correlation length (in the low magnetic field limit) or by the magnetic length
(in the opposite limit), describes the Nernst coefficient. We conclude that the
Nernst signal observed on a wide temperature () and field () range is exclusively generated by short-lived Cooper pairs.Comment: 4 pages, 4 figure
Magnetic field-induced quantum superconductor-insulator transition in
A study of magnetic-field tuned superconductor-insulator transitions in
amorphous thin films shows that quantum
superconductor-insulator transitions are characterized by an unambiguous
signature -- a kink in the temperature profile of the critical magnetic field.
Using this criterion, we show that the nature of the magnetic-field tuned
superconductor-insulator transition depends on the orientation of the field
with respect to the film. For perpendicular magnetic field, the transition is
controlled by quantum fluctuations with indications for the existence of a Bose
insulator; while for parallel magnetic field, the transition is classical,
driven by the breaking of Cooper pairs at the temperature dependent critical
field .Comment: 5 pages, 4 figure
Incontinence : stress urinary incontinence treatment—surgery first?
A randomized trial involving 460 women with stress urinary incontinence compared physiotherapy with midurethral-sling surgery. We question whether the results, showing higher rates of improvement and cure for surgery than for physiotherapy, should change best practice and clinical practice guideline recommendations
Generative adversarial networks: an overview
Generative adversarial networks (GANs) provide a way to learn deep representations without extensively annotated training data. They achieve this by deriving backpropagation signals through a competitive process involving a pair of networks. The representations that can be learned by GANs may be used in a variety of applications, including image synthesis, semantic image editing, style transfer, image superresolution, and classification. The aim of this review article is to provide an overview of GANs for the signal processing community, drawing on familiar analogies and concepts where possible. In addition to identifying different methods for training and constructing GANs, we also point to remaining challenges in their theory and application
Observation of the Nernst signal generated by fluctuating Cooper pairs
Long-range order is destroyed in a superconductor warmed above its critical
temperature (Tc). However, amplitude fluctuations of the superconducting order
parameter survive and lead to a number of well established phenomena such as
paraconductivity : an excess of charge conductivity due to the presence of
short-lived Cooper pairs in the normal state. According to an untested theory,
these pairs generate a transverse thermoelectric (Nernst) signal. In amorphous
superconducting films, the lifetime of Cooper pairs exceeds the elastic
lifetime of quasi-particles in a wide temperature range above Tc; consequently,
the Cooper pairs Nernst signal dominate the response of the normal electrons
well above Tc. In two dimensions, the magnitude of the expected signal depends
only on universal constants and the superconducting coherence length, so the
theory can be unambiguously tested. Here, we report on the observation of a
Nernst signal in such a superconductor traced deep into the normal state. Since
the amplitude of this signal is in excellent agreement with the theoretical
prediction, the result provides the first unambiguous case for a Nernst effect
produced by short-lived Cooper pairs
Background suppression in massive TeO bolometers with Neganov-Luke amplified light detectors
Bolometric detectors are excellent devices for the investigation of
neutrinoless double-beta decay (0). The observation of such
decay would demonstrate the violation of lepton number, and at the same time it
would necessarily imply that neutrinos have a Majorana character. The
sensitivity of cryogenic detectors based on TeO is strongly limited by the
alpha background in the region of interest for the 0 of
Te. It has been demonstrated that particle discrimination in TeO
bolometers is possible measuring the Cherenkov light produced by particle
interactions. However an event-by-event discrimination with NTD-based light
detectors has to be demonstrated. We will discuss the performance of a
highly-sensitive light detector exploiting the Neganov-Luke effect for signal
amplification. The detector, being operated with NTD-thermistor and coupled to
a 750 g TeO crystal, shows the ability for an event-by-event identification
of electron/gamma and alpha particles. The extremely low detector baseline
noise, RMS 19 eV, demonstrates the possibility to enhance the sensitivity of
TeO-based 0 experiment to an unprecedented level
Nernst effect as a probe of superconducting fluctuations in disordered thin films
In amorphous superconducting thin films of and ,
a finite Nernst coefficient can be detected in a wide range of temperature and
magnetic field. Due to the negligible contribution of normal quasi-particles,
superconducting fluctuations easily dominate the Nernst response in the entire
range of study. In the vicinity of the critical temperature and in the
zero-field limit, the magnitude of the signal is in quantitative agreement with
what is theoretically expected for the Gaussian fluctuations of the
superconducting order parameter. Even at higher temperatures and finite
magnetic field, the Nernst coefficient is set by the size of superconducting
fluctuations. The Nernst coefficient emerges as a direct probe of the ghost
critical field, the normal-state mirror of the upper critical field. Moreover,
upon leaving the normal state with fluctuating Cooper pairs, we show that the
temperature evolution of the Nernst coefficient is different whether the system
enters a vortex solid, a vortex liquid or a phase-fluctuating superconducting
regime.Comment: Submitted to New. J. Phys. for a focus issue on "Superconductors with
Exotic Symmetries
Gap States in Dilute Magnetic Alloy Superconductors
We study states in the superconducting gap induced by magnetic impurities
using self-consistent quantum Monte Carlo with maximum entropy and formally
exact analytic continuation methods. The magnetic impurity susceptibility has
different characteristics for T_{0} \alt T_{c0} and T_{0} \agt T_{c0}
(: Kondo temperature, : superconducting transition temperature)
due to the crossover between a doublet and a singlet ground state. We
systematically study the location and the weight of the gap states and the gap
parameter as a function of and the concentration of the
impurities.Comment: 4 pages in ReVTeX including 4 encapsulated Postscript figure
Operational Framework to Quantify “Quality of Recycling” across Different Material Types
Many pledges and laws are setting recycling targets without clearly defining quality of recycling. Striving to close this gap, this study presents an operational framework to quantify quality of recycling. The framework comprises three dimensions: the Virgin Displacement Potential (VDP); In-Use Stocks Lifetime (IUSL); and Environmental Impact (EI). The VDP indicates to what extent a secondary material can be used as a substitute for virgin material; the IUSL indicates how much of a certain material is still functional in society over a given time frame, and the EI is a measure of the environmental impact of a recycling process. The three dimensions are aggregated by plotting them in a distance-to-target graph. Two example calculations are included on poly(ethylene terephthalate) (PET) and glass. The results indicate that the recycling of bottle and container glass collected via a deposit-refund system has the lowest distance-to-target, at 1.05, and, thus, the highest quality of recycling. For PET bottles, the highest quality of recycling is achieved in closed-loop mechanical recycling of bottles (distance to optimal quality of 0.96). Furthermore, sensitivity analysis indicates that certain parameters, e.g., the collection rate for PET bottles, can reduce the distance-to-target to 0.75 when all bottles are collected for recycling
First Season QUIET Observations: Measurements of CMB Polarization Power Spectra at 43 GHz in the Multipole Range 25 <= ell <= 475
The Q/U Imaging ExperimenT (QUIET) employs coherent receivers at 43GHz and
95GHz, operating on the Chajnantor plateau in the Atacama Desert in Chile, to
measure the anisotropy in the polarization of the CMB. QUIET primarily targets
the B modes from primordial gravitational waves. The combination of these
frequencies gives sensitivity to foreground contributions from diffuse Galactic
synchrotron radiation. Between 2008 October and 2010 December, >10,000hours of
data were collected, first with the 19-element 43GHz array (3458hours) and then
with the 90-element 95GHz array. Each array observes the same four fields,
selected for low foregrounds, together covering ~1000deg^2. This paper reports
initial results from the 43GHz receiver which has an array sensitivity to CMB
fluctuations of 69uK sqrt(s). The data were extensively studied with a large
suite of null tests before the power spectra, determined with two independent
pipelines, were examined. Analysis choices, including data selection, were
modified until the null tests passed. Cross correlating maps with different
telescope pointings is used to eliminate a bias. This paper reports the EE, BB
and EB power spectra in the multipole range ell=25-475. With the exception of
the lowest multipole bin for one of the fields, where a polarized foreground,
consistent with Galactic synchrotron radiation, is detected with 3sigma
significance, the E-mode spectrum is consistent with the LCDM model, confirming
the only previous detection of the first acoustic peak. The B-mode spectrum is
consistent with zero, leading to a measurement of the tensor-to-scalar ratio of
r=0.35+1.06-0.87. The combination of a new time-stream double-demodulation
technique, Mizuguchi-Dragone optics, natural sky rotation, and frequent
boresight rotation leads to the lowest level of systematic contamination in the
B-mode power so far reported, below the level of r=0.1Comment: 19 pages, 14 figures, higher quality figures are available at
http://quiet.uchicago.edu/results/index.html; Fixed a typo and corrected
statistical error values used as a reference in Figure 14, showing our
systematic uncertainties (unchanged) vs. multipole; Revision to ApJ accepted
version, this paper should be cited as "QUIET Collaboration et al. (2011)
- …