20 research outputs found

    New insights in dermatophyte research

    Get PDF
    Dermatophyte research has renewed interest because of changing human floras with changing socioeconomic conditions, and because of severe chronic infections in patients with congenital immune disorders. Main taxonomic traits at the generic level have changed considerably, and now fine-tuning at the species level with state-of-the-art technology has become urgent. Research on virulence factors focuses on secreted proteases now has support in genome data. It is speculated that most protease families are used for degrading hard keratin during nitrogen recycling in the environment, while others, such as Sub6 may have emerged as a result of ancestral gene duplication, and are likely to have specific roles during infection. Virulence may differ between mating partners of the same species and concepts of zoo- and anthropophily may require revision in some recently redefined species. Many of these questions benefit from international cooperation and exchange of materials. The aim of the ISHAM Working Group Dermatophytes aims to stimulate and coordinate international networking on these fungi

    Toward a Novel Multilocus Phylogenetic Taxonomy for the Dermatophytes.

    Get PDF
    Type and reference strains of members of the onygenalean family Arthrodermataceae have been sequenced for rDNA ITS and partial LSU, the ribosomal 60S protein, and fragments of β-tubulin and translation elongation factor 3. The resulting phylogenetic trees showed a large degree of correspondence, and topologies matched those of earlier published phylogenies demonstrating that the phylogenetic representation of dermatophytes and dermatophyte-like fungi has reached an acceptable level of stability. All trees showed Trichophyton to be polyphyletic. In the present paper, Trichophyton is restricted to mainly the derived clade, resulting in classification of nearly all anthropophilic dermatophytes in Trichophyton and Epidermophyton, along with some zoophilic species that regularly infect humans. Microsporum is restricted to some species around M. canis, while the geophilic species and zoophilic species that are more remote from the human sphere are divided over Arthroderma, Lophophyton and Nannizzia. A new genus Guarromyces is proposed for Keratinomyces ceretanicus. Thirteen new combinations are proposed; in an overview of all described species it is noted that the largest number of novelties was introduced during the decades 1920-1940, when morphological characters were used in addition to clinical features. Species are neo- or epi-typified where necessary, which was the case in Arthroderma curreyi, Epidermophyton floccosum, Lophophyton gallinae, Trichophyton equinum, T. mentagrophytes, T. quinckeanum, T. schoenleinii, T. soudanense, and T. verrucosum. In the newly proposed taxonomy, Trichophyton contains 16 species, Epidermophyton one species, Nannizzia 9 species, Microsporum 3 species, Lophophyton 1 species, Arthroderma 21 species and Ctenomyces 1 species, but more detailed studies remain needed to establish species borderlines. Each species now has a single valid name. Two new genera are introduced: Guarromyces and Paraphyton. The number of genera has increased, but species that are relevant to routine diagnostics now belong to smaller groups, which enhances their identification

    One fungus, which genes?: development and assessment of universal primers for potential secondary fungal DNA barcodes

    Get PDF
    The aim of this study was to assess potential candidate gene regions and corresponding universal primer pairs as secondary DNA barcodes for the fungal kingdom, additional to ITS rDNA as primary barcode. Amplification efficiencies of 14 (partially) universal primer pairs targeting eight genetic markers were tested across > 1 500 species (1 931 strains or specimens) and the outcomes of almost twenty thousand (19 577) polymerase chain reactions were evaluated. We tested several well-known primer pairs that amplify: i) sections of the nuclear ribosomal RNA gene large subunit (D1-D2 domains of 26/28S); ii) the complete internal transcribed spacer region (ITS1/2); iii) partial beta-tubulin II (TUB2); iv) gamma-actin (ACT); v) translation elongation factor 1-alpha (TEF1 alpha); and vi) the second largest subunit of RNA-polymerase II (partial RPB2, section 5-6). Their PCR efficiencies were compared with novel candidate primers corresponding to: i) the fungal-specific translation elongation factor 3 (TEF3); ii) a small ribosomal protein necessary for t-RNA docking; iii) the 60S L10 (L1) RP; iv) DNA topoisomerase I (TOPI); v) phosphoglycerate kinase (PGK); vi) hypothetical protein LNS2; and vii) alternative sections of TEF1 alpha. Results showed that several gene sections are accessible to universal primers (or primers universal for phyla) yielding a single PCR-product. Barcode gap and multi-dimensional scaling analyses revealed that some of the tested candidate markers have universal properties providing adequate infra- and inter-specific variation that make them attractive barcodes for species identification. Among these gene sections, a novel high fidelity primer pair for TEF1 alpha, already widely used as a phylogenetic marker in mycology, has potential as a supplementary DNA barcode with superior resolution to ITS. Both TOPI and PGK show promise for the Ascomycota, while TOPI and LNS2 are attractive for the Pucciniomycotina, for which universal primers for ribosomal subunits often fail

    Polyphasic Discrimination of Trichophyton tonsurans and T. equinum from Humans and Horses

    No full text
    The anthropophilic dermatophyte Trichophyton tonsurans and its zoophilic counterpart T. equinum are phylogenetically closely related. The barcoding marker rDNA internal transcribed spacer (ITS) shows limited variation between these two species. In the current study, we combined molecular approaches with phenotypic data to determine the species boundaries between T. tonsurans (n = 52) and T. equinum (n = 15) strains originating from humans (n = 40), horses (n = 26), and a mouse (n = 1). Culture characteristics and physiology on Trichophyton agar media 1 and 5 were evaluated. Multi-locus sequencing involving ITS, partial large rDNA subunit (LSU), ß-tubulin (TUB), 60S ribosomal protein (RPB), and translation elongation factor-3 (TEF3) genes, and the mating-type (MAT) locus was performed. Amplified fragment length polymorphism data were added. None of the test results showed complete mutual correspondence. With the exception of strains from New Zealand, strains of equine origin required niacin for growth, whereas most strains from human origin did not show this dependence. It is concluded that T. tonsurans and T. equinum incompletely diverged from a common lineage relatively recently. MAT1-1 and MAT1-2 are the main distinguishing genes between the two species. © 2019, Springer Nature B.V.Federation of European Microbiological Societies: FEMS-RG-2016-0067HK was supported by a Grant from the Federation of European Microbiological Societies (FEMS-RG-2016-0067). The funders had no influence on the study design; on the collection, analysis, and interpretation of data; on the preparation of the manuscript; or the decision to publish

    Emmonsia helica

    No full text

    Phylogeny of dermatophytes with genomic character evaluation of clinically distinct Trichophyton rubrum and T. violaceum

    No full text
    Trichophyton rubrum and T. violaceum are prevalent agents of human dermatophyte infections, the former being found on glabrous skin and nail, while the latter is confined to the scalp. The two species are phenotypically different but are highly similar phylogenetically. The taxonomy of dermatophytes is currently being reconsidered on the basis of molecular phylogeny. Molecular species definitions do not always coincide with existing concepts which are guided by ecological and clinical principles. In this article, we aim to bring phylogenetic and ecological data together in an attempt to develop new species concepts for anthropophilic dermatophytes. Focus is on the T. rubrum complex with analysis of rDNA ITS supplemented with LSU, TUB2, TEF3 and ribosomal protein L10 gene sequences. In order to explore genomic differences between T. rubrum and T. violaceum, one representative for both species was whole genome sequenced. Draft sequences were compared with currently available dermatophyte genomes. Potential virulence factors of adhesins and secreted proteases were predicted and compared phylogenetically. General phylogeny showed clear gaps between geophilic species of Arthroderma, but multilocus distances between species were often very small in the derived anthropophilic and zoophilic genus Trichophyton. Significant genome conservation between T. rubrum and T. violaceum was observed, with a high similarity at the nucleic acid level of 99.38 % identity. Trichophyton violaceum contains more paralogs than T. rubrum. About 30 adhesion genes were predicted among dermatophytes. Seventeen adhesins were common between T. rubrum and T. violaceum, while four were specific for the former and eight for the latter. Phylogenetic analysis of secreted proteases reveals considerable expansion and conservation among the analyzed species. Multilocus phylogeny and genome comparison of T. rubrum and T. violaceum underlined their close affinity. The possibility that they represent a single species exhibiting different phenotypes due to different localizations on the human body is discussed. Key words: Adhesion, Arthrodermataceae, Character analysis, Dermatophytes, Genome, Phylogeny, Protease, Trichophyton rubrum, Trichophyton violaceu
    corecore