303 research outputs found

    Chaos in a modified Henon-Heiles system describing geodesics in gravitational waves

    Get PDF
    A Hamiltonian system with a modified Henon-Heiles potential is investigated. This describes the motion of free test particles in vacuum gravitational pp-wave spacetimes with both quadratic ("homogeneous") and cubic ("non-homogeneous") terms in the structural function. It is shown that, for energies above a certain value, the motion is chaotic in the sense that the boundaries separating the basins of possible escapes become fractal. Similarities and differences with the standard Henon-Heiles and the monkey saddle systems are discussed. The box-counting dimension of the basin boundaries is also calculated.Comment: 11 pages, 7 figures, LaTeX. To appear in Phys. Lett.

    Optimum Monte Carlo Simulations: Some Exact Results

    Full text link
    We obtain exact results for the acceptance ratio and mean squared displacement in Monte Carlo simulations of the simple harmonic oscillator in DD dimensions. When the trial displacement is made uniformly in the radius, we demonstrate that the results are independent of the dimensionality of the space. We also study the dynamics of the process via a spectral analysis and we obtain an accurate description for the relaxation time.Comment: 17 pages, 8 figures. submitted to J. Phys.

    Neurospora from natural populations: Population genomics insights into the Life history of a model microbial Eukaryote

    Get PDF
    The ascomycete filamentous fungus Neurospora crassa played a historic role in experimental biology and became a model system for genetic research. Stimulated by a systematic effort to collect wild strains initiated by Stanford geneticist David Perkins, the genus Neurospora has also become a basic model for the study of evolutionary processes, speciation, and population biology. In this chapter, we will first trace the history that brought Neurospora into the era of population genomics. We will then cover the major contributions of population genomic investigations using Neurospora to our understanding of microbial biogeography and speciation, and review recent work using population genomics and genome-wide association mapping that illustrates the unique potential of Neurospora as a model for identifying the genetic basis of (potentially adaptive) phenotypes in filamentous fungi. The advent of population genomics has contributed to firmly establish Neurospora as a complete model system and we hope our review will entice biologists to include Neurospora in their research

    The Foundation Supernova Survey: Measuring Cosmological Parameters with Supernovae from a Single Telescope

    Full text link
    Measurements of the dark energy equation-of-state parameter, ww, have been limited by uncertainty in the selection effects and photometric calibration of z<0.1z<0.1 Type Ia supernovae (SNe Ia). The Foundation Supernova Survey is designed to lower these uncertainties by creating a new sample of z<0.1z<0.1 SNe Ia observed on the Pan-STARRS system. Here, we combine the Foundation sample with SNe from the Pan-STARRS Medium Deep Survey and measure cosmological parameters with 1,338 SNe from a single telescope and a single, well-calibrated photometric system. For the first time, both the low-zz and high-zz data are predominantly discovered by surveys that do not target pre-selected galaxies, reducing selection bias uncertainties. The z>0.1z>0.1 data include 875 SNe without spectroscopic classifications and we show that we can robustly marginalize over CC SN contamination. We measure Foundation Hubble residuals to be fainter than the pre-existing low-zz Hubble residuals by 0.046±0.0270.046 \pm 0.027 mag (stat+sys). By combining the SN Ia data with cosmic microwave background constraints, we find w=0.938±0.053w=-0.938 \pm 0.053, consistent with Λ\LambdaCDM. With 463 spectroscopically classified SNe Ia alone, we measure w=0.933±0.061w=-0.933\pm0.061. Using the more homogeneous and better-characterized Foundation sample gives a 55% reduction in the systematic uncertainty attributed to SN Ia sample selection biases. Although use of just a single photometric system at low and high redshift increases the impact of photometric calibration uncertainties in this analysis, previous low-zz samples may have correlated calibration uncertainties that were neglected in past studies. The full Foundation sample will observe up to 800 SNe to anchor the LSST and WFIRST Hubble diagrams.Comment: 30 pages, 17 figures, accepted by Ap

    Transverse Wave Propagation in Relativistic Two-fluid Plasmas in de Sitter Space

    Full text link
    We investigate transverse electromagnetic waves propagating in a plasma in the de Sitter space. Using the 3+1 formalism we derive the relativistic two-fluid equations to take account of the effects due to the horizon and describe the set of simultaneous linear equations for the perturbations. We use a local approximation to investigate the one-dimensional radial propagation of Alfv\'en and high frequency electromagnetic waves and solve the dispersion relation for these waves numerically.Comment: 19 pages, 12 figure

    Kank Is an EB1 Interacting Protein that Localises to Muscle-Tendon Attachment Sites in Drosophila

    Get PDF
    Little is known about how microtubules are regulated in different cell types during development. EB1 plays a central role in the regulation of microtubule plus ends. It directly binds to microtubule plus ends and recruits proteins which regulate microtubule dynamics and behaviour. We report the identification of Kank, the sole Drosophila orthologue of human Kank proteins, as an EB1 interactor that predominantly localises to embryonic attachment sites between muscle and tendon cells. Human Kank1 was identified as a tumour suppressor and has documented roles in actin regulation and cell polarity in cultured mammalian cells. We found that Drosophila Kank binds EB1 directly and this interaction is essential for Kank localisation to microtubule plus ends in cultured cells. Kank protein is expressed throughout fly development and increases during embryogenesis. In late embryos, it accumulates to sites of attachment between muscle and epidermal cells. A kank deletion mutant was generated. We found that the mutant is viable and fertile without noticeable defects. Further analysis showed that Kank is dispensable for muscle function in larvae. This is in sharp contrast to C. elegans in which the Kank orthologue VAB-19 is required for development by stabilising attachment structures between muscle and epidermal cells

    Array CGH Phylogeny: How accurate are Comparative Genomic Hybridization-based trees?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Array-based Comparative Genomic Hybridization (CGH) data have been used to infer phylogenetic relationships. However, the reliability of array CGH analysis to determine evolutionary relationships has not been well established. In most CGH work, all species and strains are compared to a single reference species, whose genome was used to design the array. In the accompanying work, we critically evaluated CGH-based phylogeny using simulated competitive hybridization data. This work showed that a limited number of conditions, principally the tree topology and placement of the reference taxon in the tree, had a strong effect on the ability to recover the correct tree topology. Here, we add to our simulation study by testing the use of CGH as a phylogenetic tool with experimental CGH data from competitive hybridizations between <it>N. crassa </it>and other <it>Neurospora </it>species. In the discussion, we add to our empirical study of <it>Neurospora </it>by reanalyzing of data from a previous CGH phylogenetic analysis of the yeast <it>sensu stricto </it>complex.</p> <p>Results</p> <p>Array ratio data for <it>Neurospora </it>and related species were normalized with loess, robust spline, and linear ratio based methods, and then used to construct Neighbor-Joining and parsimony trees. These trees were compared to published phylogenetic analyses for <it>Neurospora </it>based on multilocus sequence analysis (MLSA). For the <it>Neurospora </it>dataset, the best combination of methods resulted in recovery of the MLSA tree topology less than half the time. Our reanalysis of a yeast dataset found that trees identical to established phylogeny were recovered only by pruning taxa - including the reference taxon - from the analysis.</p> <p>Conclusion</p> <p>Our results indicate that CGH data can be problematic for phylogenetic analysis. Success fluctuates based on the methods utilized to construct the tree and the taxa included. Selective pruning of the taxa improves the results - an impractical approach for normal phylogenetic analysis. From the more successful methods we make suggestions on the normalization and post-normalization methods that work best in estimating genetic distance between taxa.</p
    corecore