2,912 research outputs found

    Submitting to MedEdPORTAL: Do it right the first time

    Get PDF
    Presented as a Small Group/Roundtable Discussion at 2020 IUSM Education Day.Medical educators at Indiana University School of Medicine (IUSM) are encouraged to publish in MedEdPORTAL: The Journal of Teaching and Learning Resources. Published by the Association of American Medical Colleges (AAMC), MedEdPORTAL is a peer-reviewed, open-access journal for medical education scholarship. These publications contain complete curricula, including objectives, instructor guides, slides, and assessments, ready to be implemented in the classroom. When faculty members apply for promotion, MedEdPORTAL can demonstrate the quality of their work through peer-review, citation counts, and other usage reports. Despite submitting high quality learning modules, medical educators receive rejections from the MedEdPORTAL 62% of time. Reasons for rejection include insufficient educational context and assessment, mismatch of educational objectives and instructional content, and failure to build on existing curricula. Of immediately rejected submissions, 90% also have copyright issues. MedEdPORTAL is a member of the Open Access Scholarly Publishers Association (OASPA) and therefore has strict requirements for copyright and licensing images in the education materials. These requirements are difficult to navigate. For faculty who are not familiar with copyright and licensing, these barriers can be frustrating enough to deter them from submitting curricula. This workshop introduced MedEdPORTAL, described the submission process, and shared our strategies for putting together a successful submission. By the end of the workshop, participants were able to: • Identify curricula they have developed that would fit with the goals of MedEdPORTAL’s publishers • Use template to complete the Educational Summary Report (ESR) • Classify content as that which requires copyright permission, is in the public domain, or has a Creative Commons license • Navigate the process of manuscript submission and revisio

    Multi-filter spectrophotometry of quasar environments

    Get PDF
    A many-filter photometric technique for determining redshifts and morphological types, by fitting spectral templates to spectral energy distributions, has good potential for application in surveys. Despite success in studies performed on simulated data, the results have not been fully reliable when applied to real, low signal-to-noise data. We are investigating techniques to improve the fitting process

    Revivification of confinement resonances in the photoionization of AA@C60_{60} endohedral atoms far above thresholds

    Full text link
    It is discovered theoretically that significant confinement resonances in an nlnl photoionization of a \textit{multielectron} atom AA encaged in carbon fullerenes, A@C60_{60}, may re-appear and be strong at photon energies far exceeding the nlnl ionization threshold, as a general phenomenon. The reasons for this phenomenon are unraveled. The Ne 2p2p photoionization of the endohedral anion Ne@C605_{60}^{5-} in the photon energy region of about a thousand eV above the 2p2p threshold is chosen as case study.Comment: 3 pages, 1 figure, Revtex

    Prolactin delays hair regrowth in mice

    Get PDF
    Mammalian hair growth is cyclic, with hair-producing follicles alternating between active (anagen) and quiescent (telogen) phases. The timing of hair cycles is advanced in prolactin receptor (PRLR) knockout mice, suggesting that prolactin has a role in regulating follicle cycling. In this study, the relationship between profiles of circulating prolactin and the first post-natal hair growth cycle was examined in female Balb/c mice. Prolactin was found to increase at 3 weeks of age, prior to the onset of anagen 1 week later. Expression of PRLR mRNA in skin increased fourfold during early anagen. This was followed by upregulation of prolactin mRNA, also expressed in the skin. Pharmacological suppression of pituitary prolactin advanced dorsal hair growth by 3.5 days. Normal hair cycling was restored by replacement with exogenous prolactin for 3 days. Increasing the duration of prolactin treatment further retarded entry into anagen. However, prolactin treatments, which began after follicles had entered anagen at 26 days of age, did not alter the subsequent progression of the hair cycle. Skin from PRLR-deficient mice grafted onto endocrine-normal hosts underwent more rapid hair cycling than comparable wild-type grafts, with reduced duration of the telogen phase. These experiments demonstrate that prolactin regulates the timing of hair growth cycles in mice via a direct effect on the skin, rather than solely via the modulation of other endocrine factors

    Confinement and electron correlation effects in photoionization of atoms in endohedral anions: Ne@C60^{z-}

    Full text link
    Trends in resonances, termed confinement resonances, in photoionization of atoms A in endohedral fullerene anions A@C60^{z-} are theoretically studied and exemplified by the photoionization of Ne in Ne@C{60}^{z-}. Remarkably, above a particular nl ionization threshold of Ne in neutral Ne@C60 (I_{nl}^{z=0}), confinement resonances in corresponding partial photoionization cross sections sigma_{nl} of Ne in any charged Ne@C60^{z-} remain almost intact by a charge z on the carbon cage, as a general phenomenon. At lower photon energies, omega < I_{nl}^{z=0}, the corresponding photoionization cross sections develop additional, strong, z-dependent resonances, termed Coulomb confinement resonances, as a general occurrence. Furthermore, near the innermost 1s ionization threshold, the 2p photoionization cross section sigma_{2p} of the outermost 2p subshell of thus confined Ne is found to inherit the confinement resonance structure of the 1s photoionization spectrum, via interchannel coupling. As a result, new confinement resonances emerge in the 2p photoionization cross section of the confined Ne atom at photoelectron energies which exceed the 2p threshold by about a thousand eV, i.e., far above where conventional wisdom said they would exist. Thus, the general possibility for confinement resonances to resurrect in photoionization spectra of encapsulated atoms far above thresholds is revealed, as an interesting novel general phenomenon.Comment: 6 pages, 4 figures, Latex2e, jpconf.cls styl

    Novel nanorod precipitate formation in neodymium and titanium codoped bismuth ferrite

    Get PDF
    The discovery of unusual nanorod precipitates in bismuth ferrite doped with Nd and Ti is reported. The atomic structure and chemistry of the nanorods are determined using a combination of high angle annular dark field imaging, electron energy loss spectroscopy, and density functional calculations. It is found that the structure of the BiFeO3 matrix is strongly modified adjacent to the precipitates; the readiness of BiFeO3 to adopt different structural allotropes in turn explains why such a large axial ratio, uncommon in precipitates, is stabilized. In addition, a correlation is found between the alignment of the rods and the orientation of ferroelastic domains in the matrix, which is consistent with the system's attempt to minimize its internal strain. Density functional calculations indicate a finite density of electronic states at the Fermi energy within the rods, suggesting enhanced electrical conductivity along the rod axes, and motivating future investigations of nanorod functionalities

    Local stabilisation of polar order at charged antiphase boundaries in antiferroelectric (Bi<sub>0.85</sub>Nd<sub>0.15</sub>)(Ti<sub>0.1</sub>Fe<sub>0.9</sub>)O<sub>3</sub>

    Get PDF
    Observation of an unusual, negatively-charged antiphase boundary in (Bi&lt;sub&gt;0.85&lt;/sub&gt;Nd&lt;sub&gt;0.15&lt;/sub&gt;)(Ti&lt;sub&gt;0.1&lt;/sub&gt;Fe&lt;sub&gt;0.9&lt;/sub&gt;)O&lt;sub&gt;3&lt;/sub&gt; is reported. Aberration corrected scanning transmission electron microscopy is used to establish the full three dimensional structure of this boundary including O-ion positions to ~ ± 10 pm. The charged antiphase boundary stabilises tetragonally distorted regions with a strong polar ordering to either side of the boundary, with a characteristic length scale determined by the excess charge trapped at the boundary. Far away from the boundary the crystal relaxes into the well-known Nd-stabilised antiferroelectric phase

    Multiple channel crosstalk removal using limited connectivity neural networks

    Get PDF
    Limited connectivity neural network architectures are investigated for the removal of crosstalk in systems using mutually overlapping sub-channels for the communication of multiple signals, either analogue or digital. The crosstalk error is modelled such that a fixed proportion of the signals in adjacent channels is added to the main signal. Different types of neural networks, trained using gradient descent algorithms, are tested as to their suitability for reducing the errors caused by a combination of crosstalk and additional gaussian noise. In particular we propose a single layer limited connectivity neural network since it promises to be the most easily implemented in hardware. A variable gain neuron structure is described which can be used for both analogue and digital data

    The Pasadena Aerosol Characterization Observatory (PACO): chemical and physical analysis of the Western Los Angeles basin aerosol

    Get PDF
    The Pasadena Aerosol Characterization Observatory (PACO) represents the first major aerosol characterization experiment centered in the Western/Central Los Angeles Basin. The sampling site, located on the campus of the California Institute of Technology in Pasadena, was positioned to sample a continuous afternoon influx of transported urban aerosol with a photochemical age of 1–2 h and generally free from major local contributions. Sampling spanned 5 months during the summer of 2009, which were broken into 3 regimes on the basis of distinct meteorological conditions. Regime I was characterized by a series of low pressure systems, resulting in high humidity and rainy periods with clean conditions. Regime II typified early summer meteorology, with significant morning marine layers and warm, sunny afternoons. Regime III was characterized by hot, dry conditions with little marine layer influence. Regardless of regime, organic aerosol (OA) is the most significant constituent of nonrefractory submicron Los Angeles aerosol (42, 43, and 55 % of total submicron mass in regimes I, II, and III, respectively). The overall oxidation state remains relatively constant on timescales of days to weeks (O:C = 0.44 ± 0.08, 0.55 ± 0.05, and 0.48 ± 0.08 during regimes I, II, and III, respectively), with no difference in O:C between morning and afternoon periods. Periods characterized by significant morning marine layer influence followed by photochemically favorable afternoons displayed significantly higher aerosol mass and O:C ratio, suggesting that aqueous processes may be important in the generation of secondary aerosol and oxidized organic aerosol (OOA) in Los Angeles. Online analysis of water soluble organic carbon (WSOC) indicates that water soluble organic mass (WSOM) reaches maxima near 14:00–15:00 local time (LT), but the percentage of AMS organic mass contributed by WSOM remains relatively constant throughout the day. Sulfate and nitrate reside predominantly in accumulation mode aerosol, while afternoon SOA production coincides with the appearance of a distinct fine mode dominated by organics. Particulate NH_4NO_3 and (NH_4)_2SO_4 appear to be NH_3-limited in regimes I and II, but a significant excess of particulate NH_4^+ in the hot, dry regime III suggests less SO_4^(2−) and the presence of either organic amines or NH_4^+-associated organic acids. C-ToF-AMS data were analyzed by Positive Matrix Factorization (PMF), which resolved three factors, corresponding to a hydrocarbon-like OA (HOA), semivolatile OOA (SV-OOA), and low-volatility OOA (LV-OOA). HOA appears to be a periodic plume source, while SV-OOA exhibits a strong diurnal pattern correlating with ozone. Peaks in SV-OOA concentration correspond to peaks in DMA number concentration and the appearance of a fine organic mode. LV-OOA appears to be an aged accumulation mode constituent that may be associated with aqueous-phase processing, correlating strongly with sulfate and representing the dominant background organic component. Periods characterized by high SV-OOA and LV-OOA were analyzed by filter analysis, revealing a complex mixture of species during periods dominated by SV-OOA and LV-OOA, with LV-OOA periods characterized by shorter-chain dicarboxylic acids (higher O:C ratio), as well as appreciable amounts of nitrate- and sulfate-substituted organics. Phthalic acid was ubiquitous in filter samples, suggesting that PAH photochemistry may be an important SOA pathway in Los Angeles. Aerosol composition was related to water uptake characteristics, and it is concluded that hygroscopicity is largely controlled by organic mass fraction (OMF). The hygroscopicity parameter κ averaged 0.31 ± 0.08, approaching 0.5 at low OMF and 0.1 at high OMF, with increasing OMF suppressing hygroscopic growth and increasing critical dry diameter for CCN activation (D_d). An experiment-averaged κ_(org) of 0.14 was calculated, indicating that the highly-oxidized organic fraction of aerosol in Los Angeles is appreciably more hygroscopic than previously reported in urban areas. Finally, PACO will provide context for results forthcoming from the CalNex field campaign, which involved ground sampling in Pasadena during the spring and summer of 2010
    corecore