511 research outputs found

    The quantum correlation between the selection of the problem and that of the solution sheds light on the mechanism of the quantum speed up

    Full text link
    In classical problem solving, there is of course correlation between the selection of the problem on the part of Bob (the problem setter) and that of the solution on the part of Alice (the problem solver). In quantum problem solving, this correlation becomes quantum. This means that Alice contributes to selecting 50% of the information that specifies the problem. As the solution is a function of the problem, this gives to Alice advanced knowledge of 50% of the information that specifies the solution. Both the quadratic and exponential speed ups are explained by the fact that quantum algorithms start from this advanced knowledge.Comment: Earlier version submitted to QIP 2011. Further clarified section 1, "Outline of the argument", submitted to Phys Rev A, 16 page

    Footprints of the Newly-Discovered Vela Supernova in Antarctic Ice Cores?

    Full text link
    The recently-discovered, nearby young supernova remnant in the southeast corner of the older Vela supernova remnant may have been seen in measurements of nitrate abundances in Antarctic ice cores. Such an interpretation of this twenty-year-old ice-core data would provide a more accurate dating of this supernova than is possible purely using astrophysical techniques. It permits an inference of the supernova4s 44{}^{44}Ti yield purely on an observational basis, without reference to supernova modelling. The resulting estimates of the supernova distance and light-arrival time are 200 pc and 700 years ago, implying an expansion speed of 5,000 km/s for the supernova remnant. Such an expansion speed has been argued elsewhere to imply the explosion to have been a 15 M⊙M_\odot Type II supernova. This interpretation also adds new evidence to the debate as to whether nearby supernovae can measurably affect nitrate abundances in polar ice cores.Comment: 12 pages, TeX, 2 enclosed figures. Updated references, and more detailed discussion of how inferences are made of supernova propertie

    The fractal structure of the universe : a new field theory approach

    Get PDF
    While the universe becomes more and more homogeneous at large scales, statistical analysis of galaxy catalogs have revealed a fractal structure at small-scales (\lambda < 100 h^{-1} Mpc), with a fractal dimension D=1.5-2 (Sylos Labini et al 1996). We study the thermodynamics of a self-gravitating system with the theory of critical phenomena and finite-size scaling and show that gravity provides a dynamical mechanism to produce this fractal structure. We develop a field theoretical approach to compute the galaxy distribution, assuming them to be in quasi-isothermal equilibrium. Only a limited, (although large), range of scales is involved, between a short-distance cut-off below which other physics intervene, and a large-distance cut-off, where the thermo- dynamic equilibrium is not satisfied. The galaxy ensemble can be considered at critical conditions, with large density fluctuations developping at any scale. From the theory of critical phenomena, we derive the two independent critical exponents nu and eta and predict the fractal dimension D = 1/nu to be either 1.585 or 2, depending on whether the long-range behaviour is governed by the Ising or the mean field fixed points, respectively. Both set of values are compatible with present observations. In addition, we predict the scaling behaviour of the gravitational potential to be r^{-(1 + eta)/2}. That is, r^{-0.5} for mean field or r^{- 0.519} for the Ising fixed point. The theory allows to compute the three and higher density correlators without any assumption or Ansatz. We find that the N-points density scales as r_1^{(N-1)(D-3)}, when r_1 >> r_i, 2 leq i leq N . There are no free parameters in this theory.Comment: Latex, 20 pages, no figures, to be published in the Astrophysical Journa

    Muon-Induced Background Study for Underground Laboratories

    Full text link
    We provide a comprehensive study of the cosmic-ray muon flux and induced activity as a function of overburden along with a convenient parameterization of the salient fluxes and differential distributions for a suite of underground laboratories ranging in depth from ∌\sim1 to 8 km.w.e.. Particular attention is given to the muon-induced fast neutron activity for the underground sites and we develop a Depth-Sensitivity-Relation to characterize the effect of such background in experiments searching for WIMP dark matter and neutrinoless double beta decay.Comment: 18 pages, 28 figure

    Grand minima and maxima of solar activity: New observational constraints

    Full text link
    Using a reconstruction of sunspot numbers stretching over multiple millennia, we analyze the statistics of the occurrence of grand minima and maxima and set new observational constraints on long-term solar and stellar dynamo models. We present an updated reconstruction of sunspot number over multiple millennia, from 14^{14}C data by means of a physics-based model, using an updated model of the evolution of the solar open magnetic flux. A list of grand minima and maxima of solar activity is presented for the Holocene (since 9500 BC) and the statistics of both the length of individual events as well as the waiting time between them are analyzed. The occurrence of grand minima/maxima is driven not by long-term cyclic variability, but by a stochastic/chaotic process. The waiting time distribution of the occurrence of grand minima/maxima deviates from an exponential distribution, implying that these events tend to cluster together with long event-free periods between the clusters. Two different types of grand minima are observed: short (30--90 years) minima of Maunder type and long (>>110 years) minima of Sp\"orer type, implying that a deterministic behaviour of the dynamo during a grand minimum defines its length. The duration of grand maxima follows an exponential distribution, suggesting that the duration of a grand maximum is determined by a random process. These results set new observational constraints upon the long-term behaviour of the solar dynamo.Comment: 10 Figure

    Evolution of the solar irradiance during the Holocene

    Full text link
    Aims. We present a physically consistent reconstruction of the total solar irradiance for the Holocene. Methods. We extend the SATIRE models to estimate the evolution of the total (and partly spectral) solar irradiance over the Holocene. The basic assumption is that the variations of the solar irradiance are due to the evolution of the dark and bright magnetic features on the solar surface. The evolution of the decadally averaged magnetic flux is computed from decadal values of cosmogenic isotope concentrations recorded in natural archives employing a series of physics-based models connecting the processes from the modulation of the cosmic ray flux in the heliosphere to their record in natural archives. We then compute the total solar irradiance (TSI) as a linear combination of the jth and jth + 1 decadal values of the open magnetic flux. Results. Reconstructions of the TSI over the Holocene, each valid for a di_erent paleomagnetic time series, are presented. Our analysis suggests that major sources of uncertainty in the TSI in this model are the heritage of the uncertainty of the TSI since 1610 reconstructed from sunspot data and the uncertainty of the evolution of the Earth's magnetic dipole moment. The analysis of the distribution functions of the reconstructed irradiance for the last 3000 years indicates that the estimates based on the virtual axial dipole moment are significantly lower at earlier times than the reconstructions based on the virtual dipole moment. Conclusions. We present the first physics-based reconstruction of the total solar irradiance over the Holocene, which will be of interest for studies of climate change over the last 11500 years. The reconstruction indicates that the decadally averaged total solar irradiance ranges over approximately 1.5 W/m2 from grand maxima to grand minima

    Atmospheric Muon Flux at Sea Level, Underground, and Underwater

    Get PDF
    The vertical sea-level muon spectrum at energies above 1 GeV and the underground/underwater muon intensities at depths up to 18 km w.e. are calculated. The results are particularly collated with a great body of the ground-level, underground, and underwater muon data. In the hadron-cascade calculations, the growth with energy of inelastic cross sections and pion, kaon, and nucleon generation in pion-nucleus collisions are taken into account. For evaluating the prompt muon contribution to the muon flux, we apply two phenomenological approaches to the charm production problem: the recombination quark-parton model and the quark-gluon string model. To solve the muon transport equation at large depths of homogeneous medium, a semi-analytical method is used. The simple fitting formulas describing our numerical results are given. Our analysis shows that, at depths up to 6-7 km w. e., essentially all underground data on the muon intensity correlate with each other and with predicted depth-intensity relation for conventional muons to within 10%. However, the high-energy sea-level data as well as the data at large depths are contradictory and cannot be quantitatively decribed by a single nuclear-cascade model.Comment: 47 pages, REVTeX, 15 EPS figures included; recent experimental data and references added, typos correcte

    Test of the CRASH experiment counters at GSI

    Get PDF
    The CRASH (Cosmic RAys and Strange Hadronic matter) balloonborne experiment is specifically designed for the detection of the Strange Quark Matter, which according to theory is probably present in the cosmic-ray radiation at the top of the atmosphere. The detection technique is based on the measure of the AOZ ratio of the nuclei crossing the detector. The charge, the velocity and the mass of the incoming nuclei are determined using both active and passive detectors. First results of the tests of the Cˇerenkov and scintillation counters performed at GSI Darmstadt with heavy ions (Ar and Ni) of different energies are reported

    Cosmogenic effects in Mbale, L5/6 chondrite

    Get PDF
    Measurements of particle tracks, cosmogenic radionuclides, and rare gas isotopes in Mbale indicate that the meteoroid had a simple, one-stage exposure for 30.2 Ma in interplanetary space. On the basis of the measured track production rates and 60Co and 26Al activities, the meteoroid is estimated to be a sphere with a radius of &#8776; 36 cm. The activities of several cosmogenic radionuclides (i.e., 57Co, 54Mn, 22Na, 44Ti, and 26Al) in two fragments having different shielding, as estimated by their track density and 60Co activity, provide the depth variation in their production rates. Cobalt-57, 54Mn and 22Na activities agree with the production that is expected around the maximum of the solar cycle 22 as calculated from the Sunspot numbers. The U, Th-4He and K-40Ar ages are measured to be 0.54 Ga indicating a late thermal event which is in agreement with the thermal history of some other L group chondrites. The trapped N has &#948; 15N of -57 &#177; 4%o, which is much lighter than the average L-group chondrite value; this indicates the presence of an isotopically anomalous light N component
    • 

    corecore