707 research outputs found

    Oxygen isotope ratio, barium and salinity in waters around the North American coast from the Pacific to the Atlantic: Implications for freshwater sources to the Arctic throughflow

    Get PDF
    In 2002, oxygen isotope ratios of water (H218O/H216O), dissolved barium, and salinity were measured in surface waters around northern North America to identify freshwater sources and to provide a large-scale background for interpretation of regional inputs and processes. Oxygen isotope ratios showed that precipitation, river runoff, and sea ice meltwater were all significant contributors to the freshwater carried by the coastal component of the Arctic throughflow. Precipitation and runoff contributed \u3c40% and \u3e60%, respectively, to the freshwater found in surface waters along the Pacific coast. Sea ice meltwater contributed up to 65% to waters residing near the Mackenzie River and in the Canadian Arctic Archipelago. The salinity-barium relationship, after being corrected for dilution by sea ice meltwater, indicated that freshwater from the Mackenzie River flowed eastward into Amundsen Gulf. It did not, however, continue eastward through Dolphin Union Strait and Coronation Gulf in 2002. In the eastern part of the Canadian Arctic Archipelago, Baffin Bay and the Labrador Sea, barium concentrations in surface waters were low, the result of biological activity and/or local freshwater inputs with low barium concentrations

    Formation of phase lags at the cyclotron energies in the pulse profiles of magnetized, accreting neutron stars

    Get PDF
    Context: Accretion-powered X-ray pulsars show highly energy-dependent and complex pulse-profile morphologies. Significant deviations from the average pulse profile can appear, in particular close to the cyclotron line energies. These deviations can be described as energy-dependent phase lags, that is, as energy-dependent shifts of main features in the pulse profile. Aims: Using a numerical study we explore the effect of cyclotron resonant scattering on observable, energy-resolved pulse profiles. Methods: We generated the observable emission as a function of spin phase, using Monte Carlo simulations for cyclotron resonant scattering and a numerical ray-tracing routine accounting for general relativistic light-bending effects on the intrinsic emission from the accretion columns. Results: We find strong changes in the pulse profile coincident with the cyclotron line energies. Features in the pulse profile vary strongly with respect to the average pulse profile with the observing geometry and shift and smear out in energy additionally when assuming a non-static plasma. Conclusions: We demonstrate how phase lags at the cyclotron energies arise as a consequence of the effects of angular redistribution of X-rays by cyclotron resonance scattering in a strong magnetic field combined with relativistic effects. We also show that phase lags are strongly dependent on the accretion geometry. These intrinsic effects will in principle allow us to constrain a system's accretion geometry.Comment: 4 pages, 4 figures; updated reference lis

    Cyclotron resonant scattering feature simulations. I. Thermally averaged cyclotron scattering cross sections, mean free photon-path tables, and electron momentum sampling

    Get PDF
    Electron cyclotron resonant scattering features (CRSFs) are observed as absorption-like lines in the spectra of X-ray pulsars. A significant fraction of the computing time for Monte Carlo simulations of these quantum mechanical features is spent on the calculation of the mean free path for each individual photon before scattering, since it involves a complex numerical integration over the scattering cross section and the (thermal) velocity distribution of the scattering electrons. We aim to numerically calculate interpolation tables which can be used in CRSF simulations to sample the mean free path of the scattering photon and the momentum of the scattering electron. The tables also contain all the information required for sampling the scattering electron's final spin. The tables were calculated using an adaptive Simpson integration scheme. The energy and angle grids were refined until a prescribed accuracy is reached. The tables are used by our simulation code to produce artificial CRSF spectra. The electron momenta sampled during these simulations were analyzed and justified using theoretically determined boundaries. We present a complete set of tables suited for mean free path calculations of Monte Carlo simulations of the cyclotron scattering process for conditions expected in typical X-ray pulsar accretion columns (0.01<B/B_{crit}<=0.12, where B_{crit}=4.413x10^{13} G and 3keV<=kT<15keV). The sampling of the tables is chosen such that the results have an estimated relative error of at most 1/15 for all points in the grid. The tables are available online at http://www.sternwarte.uni-erlangen.de/research/cyclo.Comment: A&A, in pres

    Efficient Computation of Distance Labeling for Decremental Updates in Large Dynamic Graphs

    Get PDF
    Since today's real-world graphs, such as social network graphs, are evolving all the time, it is of great importance to perform graph computations and analysis in these dynamic graphs. Due to the fact that many applications such as social network link analysis with the existence of inactive users need to handle failed links or nodes, decremental computation and maintenance for graphs is considered a challenging problem. Shortest path computation is one of the most fundamental operations for managing and analyzing large graphs. A number of indexing methods have been proposed to answer distance queries in static graphs. Unfortunately, there is little work on answering such queries for dynamic graphs. In this paper, we focus on the problem of computing the shortest path distance in dynamic graphs, particularly on decremental updates (i.e., edge deletions). We propose maintenance algorithms based on distance labeling, which can handle decremental updates efficiently. By exploiting properties of distance labeling in original graphs, we are able to efficiently maintain distance labeling for new graphs. We experimentally evaluate our algorithms using eleven real-world large graphs and confirm the effectiveness and efficiency of our approach. More specifically, our method can speed up index re-computation by up to an order of magnitude compared with the state-of-the-art method, Pruned Landmark Labeling (PLL)

    A diagrammatic view of the equals sign: arithmetical equivalence as a means, not an end

    Get PDF
    It is recommended in the mathematics education literature that pupils be presented with equality statements that can be assessed for numerical balance by attending to notational structure rather than computation. I describe an alternative, diagrammatic approach in which pupils do not assess statements but instead use them to make substitutions of notation. I report on two trials of a computer-based task conducted with pairs of pupils and highlight two findings. First, the pupils found it useful to articulate the distinct substitutive effects of commutative (‘swap’, ‘switch’) and partitional (‘split’, ‘separate’) statements when working on the task. Secondly, the pupils did not notice that some of the statements presented were in fact false, which suggests their substituting activities were independent of numerical equivalence conceptions. This demonstrates that making substitutions offers task designers a mathematical utility for equality statements that is distinct from, but complementary to, assessing numerical balance

    Performance evaluation of flexible manufacturing systems under uncertain and dynamic situations

    Get PDF
    The present era demands the efficient modelling of any manufacturing system to enable it to cope with unforeseen situations on the shop floor. One of the complex issues affecting the performance of manufacturing systems is the scheduling of part types. In this paper, the authors have attempted to overcome the impact of uncertainties such as machine breakdowns, deadlocks, etc., by inserting slack that can absorb these disruptions without affecting the other scheduled activities. The impact of the flexibilities in this scenario is also investigated. The objective functions have been formulated in such a manner that a better trade-off between the uncertainties and flexibilities can be established. Consideration of automated guided vehicles (AGVs) in this scenario helps in the loading or unloading of part types in a better manner. In the recent past, a comprehensive literature survey revealed the supremacy of random search algorithms in evaluating the performance of these types of dynamic manufacturing system. The authors have used a metaheuristic known as the quick convergence simulated annealing (QCSA) algorithm, and employed it to resolve the dynamic manufacturing scenario. The metaheuristic encompasses a Cauchy distribution function as a probability function that helps in escaping the local minima in a better manner. Various machine breakdown scenarios are generated. A ‘heuristic gap’ is measured, and it indicates the effectiveness of the performance of the proposed methodology with the varying problem complexities. Statistical validation is also carried out, which helps in authenticating the effectiveness of the proposed approach. The efficacy of the proposed approach is also compared with deterministic priority rules

    X-ray emission from magnetized neutron star atmospheres at low mass accretion rates. I. Phase-averaged spectrum

    Get PDF
    Recent observations of X-ray pulsars at low luminosities allow, for the first time, to compare theoretical models for the emission from highly magnetized neutron star atmospheres at low mass accretion rates (M˙â‰Č1015\dot{M} \lesssim 10^{15} g s−1^{-1}) with the broadband X-ray data. The purpose of this paper is to investigate the spectral formation in the neutron star atmosphere at low M˙\dot{M} and to conduct a parameter study of physical properties of the emitting region. We obtain the structure of the static atmosphere, assuming that Coulomb collisions are the dominant deceleration process. The upper part of the atmosphere is strongly heated by the braking plasma, reaching temperatures of 30-40 keV, while its denser isothermal interior is much cooler (~2 keV). We numerically solve the polarized radiative transfer in the atmosphere with magnetic Compton scattering, free-free processes, and non-thermal cyclotron emission due to possible collisional excitations of electrons. The strongly polarized emitted spectrum has a double-hump shape that is observed in low-luminosity X-ray pulsars. A low-energy "thermal" component is dominated by extraordinary photons that can leave the atmosphere from deeper layers due to their long mean free path at soft energies. We find that a high-energy component is formed due to resonant Comptonization in the heated non-isothermal part of the atmosphere even in the absence of collisional excitations. The latter, however, affect the ratio of the two components. A strong cyclotron line originates from the optically thin, uppermost zone. A fit of the model to NuSTAR and Swift/XRT observations of GX 304-1 provides an accurate description of the data with reasonable parameters. The model can thus reproduce the characteristic double-hump spectrum observed in low-luminosity X-ray pulsars and provides insights into spectral formation.Comment: 18 pages, 10 figures, A&A accepte

    Building the New Europe: Western and Eastern Roads to Social Partnership

    Get PDF
    [Excerpt] While the ways in which neoliberalism and economic integration undermine social partnership and the welfare state have been extensively studied, less attention has been given to the ways in which such economic forces may push actors together, in reinvigorated bargaining relationships, to find workable solutions to difficult problems. In his article, we examine the contemporary status of social partnership in four case study countries—Germany, the United Kingdom, Bulgaria and Poland—as well as for Europe as a whole. In the west, while Germany presents a case of established social partnership under pressure, the United Kingdom has stood over the past two decades on the opposite neoliberal side. In the east, Bulgaria is one of the more developed cases of post-communist tripartism, while Poland exemplifies a weaker tripartism that emerged at a later stage of the transformation process. In selecting more and less developed social partnership cases in both west and east, we test the argument that the rise of Thatcher/Reagan/ Friedman ‘free market economics’ is paradoxically driving a resurgence and consolidation of social partnership relations across the new (both western and eastern) Europe

    Toward Predicting Success and Failure in CS2: A Mixed-Method Analysis

    Full text link
    Factors driving success and failure in CS1 are the subject of much study but less so for CS2. This paper investigates the transition from CS1 to CS2 in search of leading indicators of success in CS2. Both CS1 and CS2 at the University of North Carolina Wilmington (UNCW) are taught in Python with annual enrollments of 300 and 150 respectively. In this paper, we report on the following research questions: 1) Are CS1 grades indicators of CS2 grades? 2) Does a quantitative relationship exist between CS2 course grade and a modified version of the SCS1 concept inventory? 3) What are the most challenging aspects of CS2, and how well does CS1 prepare students for CS2 from the student's perspective? We provide a quantitative analysis of 2300 CS1 and CS2 course grades from 2013--2019. In Spring 2019, we administered a modified version of the SCS1 concept inventory to 44 students in the first week of CS2. Further, 69 students completed an exit questionnaire at the conclusion of CS2 to gain qualitative student feedback on their challenges in CS2 and on how well CS1 prepared them for CS2. We find that 56% of students' grades were lower in CS2 than CS1, 18% improved their grades, and 26% earned the same grade. Of the changes, 62% were within one grade point. We find a statistically significant correlation between the modified SCS1 score and CS2 grade points. Students identify linked lists and class/object concepts among the most challenging. Student feedback on CS2 challenges and the adequacy of their CS1 preparations identify possible avenues for improving the CS1-CS2 transition.Comment: The definitive Version of Record was published in 2020 ACM Southeast Conference (ACMSE 2020), April 2-4, 2020, Tampa, FL, USA. 8 page
    • 

    corecore