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ABSTRACT 

Present era demands an efficient modeling of any manufacturing system that can enable it to cope with the 

unforeseen situations on the shop floor. One of the complex issues of these manufacturing systems that 

affect the performance of the manufacturing system is the scheduling of the part types. In this paper, 

authors have made an attempt to overcome the impact of uncertainties such as machine breakdowns, 

deadlocks, etc. by inserting the slack that can absorb these disruptions without affecting the other scheduled 

activities. The impact of the flexibilities in this scenario is also investigated. Authors have formulated the 

objective functions in such a manner that a better tradeoff between the uncertainties and flexibilities can be 

established. Consideration of AGVs in this scenario helps in loading or unloading of the part types in a 

better manner. In recent past, a comprehensive literature survey revealed the supremacy of the random 

search algorithms in evaluating the performance of these types of dynamic manufacturing systems. The 

authors have used a metaheuristic known as Quick Convergence Simulated Annealing (QCSA) algorithm 

and employed it to resolve the dynamic manufacturing scenario. The metaheuristic encompasses a Cauchy 

distribution function as a probability function that helps in escaping the local minima in a better manner. 

Various machine breakdown scenarios are generated. A “heuristic gap” is measured and it indicates the 

effectiveness of the performance of the proposed methodology with the varying problem complexities. 

Statistical validation is also carried out that helps in authenticating the effectiveness of the proposed 

approach. The efficacy of the proposed approach is also compared with the deterministic priority rules.   
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I. INTRODUCTION 

The effective implementation of FMS is vital for the success of manufacturing systems. Depending 

on the state of the shop floor and information on existing orders, an extrapolative schedule is 

generated initially on the shop floor that is modified subject to unexpected events such as machine 

breakdown, tool breakage etc for retaining viability in the system. There are some scenarios in 

scheduling of parts in FMS where adequate slack is provided in the system to negate the 

undesirable impact of interruptions and need not requires any rescheduling. The slack time is 

defined as the difference between the cycle time and the elapsed/processing time. However, there 

are a number of situations where the slack in the system affects the performance of the system and 

require corrective measures. In this regard, the authors have developed extrapolative schedules, 

which efficiently take care of the disruptions on the shop floor and retain the high performance 

value of the system. These schedules are aimed to assign the resources to the different jobs 

effectively for optimizing the performance measures of FMS. The slack time ratio (Veilleux and 

Petro, 1996) is sometimes used to assign priorities to the jobs in queue which is defined as follows:  
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The uncertainties in manufacturing environments have been broadly classified in the three 

categories such as, complete unknowns, suspicious about the future, and known uncertainties. Due 

to their nature, the first two types of the uncertainties are practically impossible to be taken care in 

the shop floor. The third type which is known uncertainties, include informations such as, machine 

breakdown times and deadlocks that can be resolved in the manufacturing system. Based on the 

above-mentioned informations, schedules are generated. To overcome the breakdown of the 

machines, the extrapolative schedule aim to maximize the difference between the repair time and 

slack time of the operation.            

With a view to implement FMS in real time efficiently, the main performance measure of the 

system that accompanies random machine breakdowns is considered to be average flow time and 

average delay time. The main aim of the authors is to obtain the sustainable performance measure 

in dynamic situations that conforms to the consistency with the production plans in the shop floor. 

Data related to the distributions of the time between breakdowns along with repair time of 

machines is available to the authors and based on these informations, a schedule is generated. An 

effort has been made in this paper to optimize the performance of FMS, where flexibilities 
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pertaining to part routing and machine, AGVs and uncertainties in the system are considered in an 

integrated manner.    

Owing to the complex nature of the problem, that contains various uncertainties, existing 

methodologies such as deterministic routing techniques etc. found it a tedious task to resolve in the 

real time. Existing mathematical modeling tools have made it more difficult to comprehend. In this 

paper, authors have attempted to model the problem in a straightforward manner. Application of 

AI based techniques (Fox and smith, 1984 and Ow et al., 1990) has proved to be very useful in 

resolving complex production planning problems. Enticed by the efficacies of random search 

algorithms, authors have used a Quick Converging Fast Simulated Annealing Algorithm (QCSA) 

(Mishra et al., 2005) to resolve the problem on hand. Applied algorithm that combines the 

elements of directed and stochastic search is found to maintain the balance between the 

exploitation and exploration of the search space. The algorithm inherits the effectiveness 

associated with simple Genetic Algorithm (GA) and Simulated Annealing (SA) and does away 

from some of their demerits such as premature convergence, extreme reliance on crossover and too 

slow mutation rate. The algorithm employs a Cauchy distribution function instead of Boltzmann 

probability function in the selection step that helps in escaping the local minima in an effective 

manner. The alluring aspect of the algorithm is its ability to converge to a near optimal solution 

quickly, despite the difficulties such as high dimensionality, discontinuity and multi-modality.  

The QCSA based solution methodology is employed to obtain optimal or near optimal 

performance measure for the system i.e. minimum makespan, average flow time and delay time for 

the schedules in an FMS. Authors have formulated the different types of problem by considering 

the uncertainties and flexibilities. The proposed methodology is authenticated by applying 

heuristic gap that evaluates the efficiency of the procedure and subsequently ANOVA is employed 

to reveal the robustness of the same. Heuristic gap is the deviation in lower bound from an upper 

bound for a problem. Intensive computational experiments have been performed for different 

scenarios of the problem in FMS environment.  

The next section deals with the literature review related to the scheduling in FMS that takes care of 

flexibilities and uncertainties present in the system as well as their impact over the system 

performance. A complete modeling of the problem that takes into account the uncertainties is 

detailed in section 3. QCSA algorithm and their application over the underlying problem is 

discussed in section 4. Computational experiments and discussions are presented in the section 5. 

The paper is concluded in section 6.  
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2. Literature Review  

In the present competitive and highly dynamic situations, efficient scheduling systems are required 

that would be able to generate responsive schedules. Several of the literatures regarding the 

scheduling of FMS are concerned with the schedule generation.  

Various approaches in the literature exist that analyze the scheduling problems in a dynamic and 

stochastic situation and propose the reactive policies for shop floor control. In this regard, Hitomi 

et al. (1989) discussed the design and schedule problem of flexible manufacturing cell with 

automatic setup equipment. An Optimal queuing network model with general service time and 

limited local buffers have been studied by Yao and Buzzacott (1985), they also evaluated the 

performance of the FMS. Choi et al. (1988) evaluated the traditional work scheduling rules in FMS 

with a physical simulator. Hall and Sriskandrajah (1996) presented a survey of scheduling 

problems with blocking and no-wait. Modeling approaches related to control of a dynamic load 

condition in a Flexible Manufacturing Cell have been presented by Seidmann (1987), and 

Tenenbaum and Seidmann (1989). Further, Yih and Thesen (1991) brought into a concept of 

modeling by utilizing the traits of Semi-Markov decision model for dynamic situations in flexible 

manufacturing cell and subsequently determined the feasible set of part type sequences in the 

system.  

For highly dynamic situations, the real time decisions are taken as per completely reactive 

approaches. One of the techniques used in this respect is the priority dispatching rules, where the 

available highest priority job is selected for processing subject to the constraints related to 

processing times on machines and have been discussed in detail by Bhaskaran and Pinedo (1991). 

This predictive-reactive scheduling is aimed to generate a predictive schedule that optimizes some 

measures of system performance based on the job completion times without taking into account 

the possible disturbances on the shop floor. The deficiency of the aforementioned approach is how 

to respond to the disturbances so that the feasibility of the system is maintained. In this regard, Wu 

et al. (1993) proposed a multi-criteria rescheduling approach. The selection of appropriate 

scheduling rules for FMS by simulation method has been discussed in detailed by Lashkari et al. 

(1991). Knowledge based scheduling approaches also play a major role in selecting a suitable 

rescheduling policy that has been discussed by some researchers. Denzler et al. (1987) carried out 

experimental investigation of FMS scheduling rules to find out the suitable rules that can result in 

the efficient production.  
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To cope up the varying processing times and breakdown of machines in a dynamic job shop 

environment, Muhlemann et al. (1982) examined the scheduling frequency that influences the 

degree of responsiveness of the manufacturing system. In static scheduling environment, a 

rescheduling policy has been studied by Yamamoto and Nof (1985) that also considers random 

machine breakdowns in the system. This policy is mainly motivated to generate a random schedule 

in presence of unforeseen events. In this regard, various algorithms (Been et al. (1991), Wu et al. 

(1993)) have been applied to achieve the better performance measures of the system. Church and 

Uzsoy (1992) studied the problem of rescheduling in a single machine environment with dynamic 

job arrivals and proposed that rescheduling takes place at fixed time intervals unless an urgent job 

triggers an early rescheduling. Mehta and Uzsoy (1998) developed an algorithm that minimizes the 

maximum lateness and the difference between job completion times in the system. Leon, Wu, and 

Storer (1994), worked in the area of finding a good initial schedule that maintains its planned 

performance under stochastic disturbances. Zhou et al. (2005) studied the dynamic optimal 

policies for the processing of jobs on a single machine subjected to random breakdowns. Zhou et 

al. (2003) also studied the stochastic scheduling for minimizing the expected weighted flow time 

using preemptive repeat machine breakdowns model. M. Savsar (2005) carried out the 

performance analysis of an FMS operating under different failure rates and maintenance policies. 

The various procedures that combine simulation and analytical models were used to analyze the 

effect of maintenance policies on the performance of an FMS in his work. These studies reveal that 

the schedules that are robust to stochastic disturbances can be generated without too much sacrifice 

from the performance of the schedule. 

Flexibilities pertaining to different machines and jobs play a crucial role in evaluating the 

performance measures of the system. The available literature clearly indicates towards the future 

research scope in this field. However, limited research on the flexibility indicates that it has 

remained ambiguous to a great extent (Sethi and Sethi 1990, Gupta and Buzacott (1989). In 

particular, there is a lack of precise analytical models that are capable of generating clear 

relationships between the degree of flexibility in a system and the systems level of performance as 

rightly pointed by the Slack (1987), Ettlie (1988), and Benjaafar (1992). The work carried out by 

Jaikumar (1986), Ratna and Tchijov (1990), and Benjaafar (1992) concluded that the vagueness of 

flexibility has also resulted in complexity in designing it into new systems and sustaining it over 

the systems life times. The work carried out by Cai et al. (2003) focuses on the value of processing 

flexibility in multipurpose machines. Falkner and Benhajla (1990), Swamidass and Waller (1990), 
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and Suresh and Meredith (1985) demonstrated that lack of adequate methodologies for assessing 

the value of flexibility that has made it difficult to financially justify the investment, and 

acquisition of, flexible technologies.  

Various studies have reported that the effectiveness of the certain manufacturing systems depend 

on how efficiently the AGVs are routed in the system that takes into account various uncertainties 

too. In this context, Egbelu and Tanchoco (1984) first attempted the simulation-based studies for 

testing the scheduling rules for an AGV based material handling system. In their proposed work, 

various AGV scheduling rules were developed and through the simulation model their 

performances were measured. Later on, various cart selection and tool allocation rules were tested 

by Smith et al. (1985). Tanchoco et al. (1987) presented approach to determine the optimal flow 

path for AGVs, which minimized total travel of loaded vehicles. Tang et al. (1993) identified six 

decision rules for FMS scheduling involving operations among parts, machine, and AGVs. 

Sabuncuoglu and Hommertzheim (1992a, 1992b; 1993, 1995, 1999) studied machine and AGV 

scheduling rules against various performance measures for a random type FMS. Their result 

signified the importance of AGV scheduling in FMSs. The estimation of part waiting time and 

fleet sizing in AGV systems was studied by Koo et al. (2005) using the queuing model. However, 

authors have noticed a remarkable research gap in the previous approaches, i.e. related with the 

application of AI based approaches in evaluating the performance of such type of manufacturing 

systems. Even, a comprehensive mathematical analysis of such type of manufacturing systems 

where different types of uncertainties and flexibilities are considered is missing. These research 

issues became the motivating factor to authors who considered such type of complex 

manufacturing system and applied a random based search technique “Quick Convergence 

Simulated Annealing (QCSA)” in resolving the same.   

3. MODEL FORMULATION 

The authors have formulated a mathematical model to represent FMS and its layout (shown in 

Figure 1). The notation of this model has been presented in the Appendix I. The proposed model 

consists of machines that are capable of performing wide variety of operations. These machines 

can execute at most one operation at a time. The proposed model also incorporates the different 

flexibility measures that help in absorbing the uncertainties prevailing in the FMS. These 

uncertainties often restrict the development of a robust schedule for FMSs and subsequent 

performance of the system gets hampered. Thus, flexibility measures such as routing and 

machining flexibilities have been incorporated at the operational level. The AGVs are also taken 
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into account in the modeling to deliver part types among the machines. The flexibilities have also 

been incorporated in the loading and unloading of part types from the central storage and machines 

running under the possibility of random breakdowns. A comprehensive study of the related 

literature revealed that still the issues pertaining to mapping of various uncertainties in a FMS 

environment are yet to be efficiently accomplished. In this context, authors have made an attempt 

to model FMS where AGV routing, flexibilities pertaining to machine and part routing exist along 

with the uncertainties such as breakdown, deadlocks. The uncertainties are to be handled properly, 

so that the loss incurred could be minimized.  

<<Insert Figure 1 about here>> 

Let a FMS consists of set of N part types that are to be processed on a set of M machines. It is 

assumed that part types arrive dynamically to the machines with arrival rate j . This arrival rate is 

previously based on the departure processes of earlier machines along with the operating 

characteristics of the part delivery system. Each part type requires an operation on the 

corresponding machine with an average processing time 1/λj. The part inter-arrival and processing 

times are exponentially distributed with respect to the means 1/ j and 1/λj. Symbol 2
a   and 2

b  

refer, respectively to the coefficients of variance. Higher values of  2
a   correspond to the higher 

variability in part type arrivals and can be used to indicate higher part type demand variability and 

predictability. The values of 2
b  explain the variability in part processing times that is in the model 

to represent the variability in the processing capabilities of the machine, or the processing 

requirements of the part types. Variability in processing speeds, tool handing, setups, and machine 

breakdowns are referred to as machine related variability. The part related variability ( ) is due to 

part variety in the product mix or too frequent changes in design and manufacturing specifications 

of the part types and is expressed in equation (1). The variability is expressed as an increasing 

function that follows the Poisson distribution P(X),  


2 2 2 2

2 2

(1 )( )

2(1 )
b a b

b

   
 

 


*P(X)      … (1), 

where, the ratio of processing time to part inter-arrival time is expressed as  




                … (2), 



 8

The coefficient of variance b  is mathematically expressed as, 

2

2 2

1

1 1J
j

b
j j


 

  

 
   

 
       … (3) 

The overall average arrival rate is expressed as, 

1

J

j
j

 


         … (4) 

and average processing time is expressed as, 

 
1

1 1J
j
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
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         … (5) 

The Poisson distribution function is defined in equation (6), 

 

!
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                    0  h <0  

where parameter  of the Poisson distribution represents the average rate of occurrence of the 

event of interest.   

Proposition 3.1: The probability function is selected in such a manner that makes the variability an 

increasing function. 

Proof: Since Benjaafar et al. (1995) has already demonstrated that   is an increasing function. So, 

inherent task is to prove P (X) as an increasing function. we assume that,  

Let 
!
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u

u
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Since  hf '  is less than zero and  hf '' is greater than zero this implies that the function is 

monotonically increasing that means the variability is an increasing function. The plot of 

variability versus P(X) is shown in figure (2). 

<<Include Figure 2 about here>> 

The performance measures are increasing function of demand and processing variability. The 

effect of flexibility on the performance can be easily shown to increase in magnitude as variability 

in either processing or demand increases. That is, the performance improvement due to flexibility 

rises in significance as variability increases. The flexibility plays a major role in determination of 

the performance measures of the system, thus flexibility is expressed as an increasing function 

following the Gaussian probability distribution,  

*zRm
G

m m

 

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 
(x)      … (9) 

where G is Gaussian probability distribution function, defined in equation (10) 

2

2

( )

21
( )

2
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       … (10) 

where,  is the variance. 

Proposition 3.2: The Gaussian probability is to be chosen in such a manner that the flexibility 

remain as an increasing function. 

Proof: As already proved by Benjaafar et al. (1995) that 
m

m

 



 is an increasing function, so to 

prove that 
m

m

 



* G(x) is an increasing function, differentiating the equation (10) gives, 
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
xx

e       … (11) 
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Since G’ (x) is less than zero and G’ (x) is greater than zero, this implies that function is 

monotonically increasing i.e. flexibility is an increasing function. The plot of flexibility versus 

Gaussian probability distribution function is shown in Figure (3). 

<<Include Figure 3 about here>> 

The proposed model also incorporates the AGVs for the loading and unloading of the part types on 

the machines. The mechanism of load and unload is based on the priority assignment to the part 

types and machines. This priority determination primarily depends on the various part 

characteristics e.g. processing time, machine loading flexibility (average number of machines per 

operation) etc. Part types are processed on the machines according to the priority based on the 

mean time between failures of machines, distances from the position of part etc. In the present 

work, authors have mainly considered the machine prioritization.  

The priorities for the machines are evaluated as follows; 

f

f
P

j
m          … (12) 

The above equation indicates that higher priority is assigned to the machine having larger mean 

time between failures.  

D

D
P

j
m          … (13) 

Equation (13) indicates that higher priority is given to the machine having smaller distance from 

the position of part. The priority of the machines based on the meantime between failures and 

distance between parts are presented in Table (1) and Table (2) respectively. After the priority 

assignment the next task is the transportation of these part types in-between the job shop with the 

aid of AGVs. The part types may exist at the following positions:  

a. Part may be partly processed and is on a machine. 

b. Part may be waiting to be processed and is in the central storage. 

c. Part may be processed and waiting for unloading from the machine 
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If the AGV reaches the machine before the previous operation on the part is completed, it has to 

wait until the previous operation is finished, and otherwise it can load the part, transport it to the 

selected machine and unload the part on the machine. The AGV, which can load the selected part 

on the selected machine in the least possible time, is considered. The AGV has the flexibility to 

load any part on any machine. In the proposed work, the authors have used AGVs for delivering 

the part types based on the priority determination among the machines. To overcome the 

uncertainties existing in the FMS scenario the AGV routing, loading and unloading has been made 

flexible so that the total delay time can be minimized and part types can be delivered in least 

possible time at desired locations.  

<<Insert Table 1 about here>> 

<<Insert Table 2 about here >> 

The dynamic scheduling of FMSs consists of the assignment and sequencing of a set of part types 

among the machines in order to maintain an optimized schedule when an unexpected change of 

production occurs. The FMS scheduling problem consists of processing of a number of part types 

on a number of machines. The objective is to optimize the some measures of performance based on 

the completion times of the part types. Extensive research has been carried out in this area, the 

review of which can be found in the work carried out by Ovacik and Uzsoy (1997). The 

complexity prevailing in the FMSs enforced the development of a robust schedule that can absorb 

the uncertainties existing in the FMS environment. The proposed work deals with the generation of 

an extrapolative schedule that incorporates machine breakdowns, the impact of flexibility at the 

system operational level, and AGV scheduling under uncertain environment. Authors have made 

an attempt to combine these objectives in their proposed model which is mathematically 

represented in the following manner. The undertaken objective functions are as follows: 

[a] Min n
S

Jjk
Ojk

jkjk YPSRDEZ
l

 


}0),(][max{ ,   …(14)   

[b] Min 



 )( mE       …(15) 

[c] Min nkjnkj

n

kj GTJ  ,,};min{ 1,,    …(16) 

j= 1, 2, 3 …J; k=1, 2, 3…K 
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These objectives are subject to the following constraints: 

m

J

1j

K

1k
jkmW  

 
      … (17) 

5          … (18) 

0         … (19) 

jkjk CE          … (20) 

1b m           … (21) 

m

K

k
jkjk

J

j

xmP 
 11

)(       … (22)  

The first objective function shown in equation (14) emphasizes on minimizing the difference 

between the expected repair duration and the slack time inserted with random machine 

breakdowns. It is assumed that a set of N part types are to be processed on a set of M machines. 

The processing time Pjk are deterministic and known a priori. Let Mf be the set of machines, which 

are subjected to random breakdowns. The time between the breakdowns and repairs are known for 

the set of machines (Mf) subjected to breakdown. An extrapolative schedule is generated at the 

beginning of the planning horizon. Extrapolative schedule (PS) determines the sequence of 

operations on machines and the amount of idle time to be inserted. To improve predictability, 

sequences of operations on the machines are first determined, and then idle time is inserted. The 

purpose of this additional idle time is to minimize the expected part completion time deviations. 

However, it is difficult to model directly due to the multifaceted effects of multiple, interacting 

breakdowns, and complex rescheduling policies. To overcome this surrogate measures are used, 

which are not only simple enough to be calculated easily, but also provide good measure of 

schedule predictability for an extrapolative schedule. Once it is selected, the amount of idle time 

required to be inserted before operation k can be determined, to optimize the selected surrogate 

measure for PS. 
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Extrapolative scheduling enhances the predictability by inserting the additional idle time into PS; 

the disturbances are absorbed by the additional inserted slack time. Let Oj be the set of operations 

on the machines in Mf which can affect part j i.e. the set of operations, where there exists a path 

from node jk to node J* in the directed graph corresponding to PS. Let Sjk (P
S) be the slack time of 

operation k Є Oj with respect to part j. Let m  be the mean rate at which breakdowns occur, and 

Ym the mean repair duration on machine m. The expected repair duration E[RDjk] for operation k 

of part type j processed on machine m is given by 

       
m

mjk
jk

YP
RDE


][        … (23) 

Where Pjk is the processing time of operation k with respect to part type j 

The slack of operation k with respect to part type j, if a path from k to J * in the directed graph 

exists is given by 

)}J,jk(V)jk,0(V{)P(C)P(S *s
l

s
jk      … (24) 

If for operation jOk where E [RDjk] > S jk (P), the part type j will be delayed by Zjk, J = E [RDjk] 

– S jk,J (P
S) where Zjk,J is the delay in processing of part type j due to breakdowns during the 

processing of operation k. The first objective function defined above in equation (14) includes the 

parameter Yn that is defined below in equation (25) as, 

nnnn TFGY  ;        … (25)    

Breakdown information is used at an aggregate level, as the shapes of the distributions are not 

considered. The limiting factor here is that, the slack Sjk may not be available if operation is 

delayed by breakdowns during the processing of the preceding operations. The factor nY  governs 

for the minimum time by which partly processed part j will be ready for loading on the nth AGV. 

This factor takes account the AGV routing under such dynamic conditions. 

The second objective incorporates the relationship between flexibility, performance and variability 

and emphasizes on the determination of the flow time. In order to reduce the flow time, one can 

either increase the capacity, decrease variability or increase flexibility. When demand or 

processing variability cannot be eliminated and capacity is costly to upgrade, system flexibility 
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becomes critical. As seen in equation (15) flexibility is of value only in the presence of some 

degree of variability. Thus authors have tried to minimize the flow time which incorporates all the 

abovementioned relationships presented in equation (15).   

Finally the authors have considered an objective function that proves to incorporate AGV 

scheduling and is presented in equation (16).  In this the authors have minimized the time of 

loading and unloading in order to avoid any delay associated with the product delivery. The 

heuristic adopted for the scheduling of AGV (Mukhopadhyay et al., 1991) has been described later 

in the flow chart of the proposed algorithm. According to the heuristic, the AGV selection begins 

with associating time counters with different part types, machines, and AGVs. After prioritization 

of the part types, and machines, the time upto which the AGV is engaged in calculated. At last the 

time after which the AGV will reach the central storage is compared with the time by which the 

partially processed part will be ready for loading on the AGV, and the part satisfying the condition 

mentioned in the heuristic is selected for loading on the AGV. At first the AGV is selected 

randomly and later the AGV which is free is selected. If the machine breakdown occurs the 

machine having the priority adjacent to the previous one is selected for loading and unloading.  

The constraints are defined in the equation (17) - (22). The constraint defined in equation (17) 

governs for the avoidance of the deadlocks. It also defines the capacity pertaining to each machine 

group. Equation (18) defines that flexibility should be less than 5, as increasing flexibility beyond 

that gives minor improvement. Equation (19) describes that variability can never be zero, as if  the 

condition fails, flow time becomes equal to processing time and remains constant despite the 

consequences of the level of flexibility. Constraint (20) describes that the next operation can never 

start until the previous operation is finished. Constraint (21) need to be at least greater than 

1m  for the dedicated scenario to become more desirable. Equation (22) indicates that machining 

time for any operation can’t exceed the capacity of any machine. 

4. QUICK CONVERGING SIMULATED ANNEALING (QCSA) ALGORITHM 

The complexities existing in the real world environment need to be tackled by the modern 

optimization techniques.  The scheduling problem existing in the FMS is dynamic in nature and is 

prone to uncertainties such as machine breakdown, deadlocks, tool breakages etc. These problems 

are very difficult to be solved by the conventional optimization methods. The conventional 

techniques such as integer linear programming (ILP), branch and bound,  and other mathematical 

programming methods are not only time consuming as well as they do not guarantee the optimal 
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solution. Latest development in the area of optimization methods have led to the advancement of 

local search heuristics such as Genetic algorithm (GA), Simulated annealing (SA) and Tabu search 

etc.  

As the complexities are increasing in the existing scenario, the conventional optimization methods 

are unable to cope with those uncertainties in effective manner. They are prone to get entrapped in 

local optima and results in the degraded performance of the system. The probability to be 

entrapped in the local optima and requirement of the large search space and computational time to 

converge to the desired solution necessitated the development of new methodologies.  A random 

search technique known as simulated annealing (SA) was independently proposed by Kirkpatrick 

et al. (1983) and Cerny (1985). Even if the simulated annealing is found to be more superior than 

GA, computational expensiveness restricts its application in some special cases (Creutz, 1983). 

Hence in order to map the complex problem existing in such uncertain environment motivated the 

authors to adopt a robust algorithm that can be proficient in exploring the search space in more 

efficient manner leading to the optimal solution.  

 The present paper deals with a latest intelligent exploration technique known as Quick 

Converging Simulated Annealing (QCSA), which merges the significant features of GA and SA, 

with some corrections incorporated in order to enhance the escaping tendency of the local optima. 

This new technique converges to the optimal solution requiring less computational time. 

4.1 ALGORITHM 

 The quick converging simulated annealing (QCSA) algorithm amalgamates the elements of 

directed and stochastic search in order to maintain the astonishing balance between exploration and 

exploitation of the search space. It starts with randomly generated set of population. The crossover 

and mutation operations are then introduced to explore the extensive solution space. Afterwards 

new solutions are generated by the introduction of simulated annealing which carries out the 

evolution process. After the finite number of iterations the convergence occurs at the optimal or 

near optimal solution of the problem. The flow chart of the algorithm over the undertaken problem 

has been shown in Figure 4. 

<<Insert about Figure 4 here>> 
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The steps of the QCSA algorithm are described as follows: 

Step 1  : Assign number of generation n = 1. Assign the values of population size  
    (P), maximum number of generation (G) and T (1). 

Step 2 : Randomly generate a set of population size chromosomes as initial   
   parent population.  

Step 3     : Compute the fitness (X1) for each parent. 

Step 4     : By using crossover and mutation produce children from each parent. 

Step 5 : Compute fitness function of each child of every family. Select the best   
   one in every family according to having highest fitness value (X2). 

Step 6     : Compute ΔX = X2 – X1. 

Step 7     : Get the parent for next generation out of each family, adopting following  
      transition rules:  

   If (ΔX>0 or F (T (n), ΔX)>γ) 

   best child is accepted as parent for new generation. 

   else 

   the earlier one remains as new parent. 

Step 8    : Reduce the temperature as per following cooling schedule: 

   
))1(log(1

)1(*2.3
)(

nT

T
nT


  

Step 9    : Perform n = n+1. 

Step 10  : Select the best one of the final population according to having highest   
   fitness value. This gives the optimal or sub-optimal solution. 

STOP. 

 

4.2 SOLUTION METHODOLOGY: 

4.2.1 Encoding: 

The solution encoding of the problem into a chromosome is essential for the genetic algorithm to 

maintain the effectiveness of the algorithm. There are various encoding schemes proposed by 
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researchers (binary coding by Holland (1975), adjacent coding by Grefenstette et al.(1985), 

matrix-based encoding scheme by Sawaka et al.(1996), etc.) such as real number encoding for 

constrained optimization problems and integer coding for combinatorial optimization problems. 

Choosing an appropriate representation of candidate solutions to the problem at hand is the 

foundation for applying Genetic Algorithm (GA) to solve real world problems, which conditions 

all the subsequent steps of GAs. One of the basic features of GAs is that they work on coding 

space and solution space alternatively. Genetic operators work on coding space (chromosomes), 

while evaluation and selection works on solution space which is also known as genotype and 

phenotype space respectively. The solution space is the desirable area where the selection 

operators direct the genetic search to look for the optimal or sub-optimal solution in the possible 

feasible area. The coding space is the area where the genetic operators are defined in order to 

initiate the search process in the solution space. The mapping from the genotype and phenotype 

space considerably affects the performance of the genetic search. The problems usually associated 

with the mapping are that some individuals correspond to infeasible solutions to a given problem. 

It gives rise to two basic concepts of Infeasibility and Illegality. Infeasibility refers to the 

phenomenon that a solution decoded from chromosome lies outside the feasible region of a given 

problem whereas, illegality refers to the phenomenon that a chromosome does not represent a 

solution to a given problem. The coding and solution space is shown as follows: 

 

 

 

4.2.2 INITIALIZATION: 

 The QCSA algorithm operates on a set of randomly generated population strings known as 

chromosomes. Chromosomes consist of a set of genes. The total number of chromosomes in the 

population is known as population size. The pseudo codes for this are given as, 

{ 

begin 

for i         1 to pop_size do 

Solution Space 
 

Evaluation and 
Selection 

Coding Space 
Genetic Operation 
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produce a random chromosome Si ; Si           random [i, num] 

if (Si is not feasible) then 

i          i-1; 

end 

end 

end 

} 

 

4.2.3 EVALUATION: 

The evaluation of the fitness function is significant in deciding the appropriate population during 

each generation. The following steps are performed for evaluation: 

Step 1: Convert the chromosomes genotype to its phenotype. 

Step 2: Evaluate the objective function f(xk). 

Step 3: Convert the value of objective function into fitness. For maximization problem,  the 

fitness is simply equal to the value of objective function eval(Sk) = f(xk) ,  k=1,2,......, pop_size. 

The evaluation of this algorithm is in accordance to the multi-objective minimization problem 

which has been modeled in section. This evaluates the values for the problem and tries to minimize 

it in the larger search space by modifying the attributes of the genetic operators of the algorithm. 

The evaluation function of QCSA ensures that the values obtained are not trapped in local minima.  

4.2.4 CROSSOVER 

Crossover is the main genetic operator. It operates on two chromosomes at a time and generates 

offspring by combining features of both chromosomes. A simple way to accomplish crossover is to 

choose a random cut-point and generate child by combining the segment of one parent to the left of 

the cut-point with the segment of the other parent to the right of the cut-point. The performance of 

the GAs depends to a great extent on the performance of the crossover operator used. The 

crossover probability (pc) is defined as the ratio of the number of the offspring produced in each 
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generation to the population size (pop_size). This ratio controls the expected number (pc * 

pop_size) of chromosomes to undergo the crossover operation. A higher crossover rate allows 

exploration of more solution spaces and reduces the chances of resolving for a false optimum; too 

high rate results in the consumption of a lot of computation time in exploring unpromising regions 

of the solution space. The single cut-point crossover method is explained below: 

{ 

begin 

k         0 

while (k<= pop_size) do 

rk             random number from [0,1]; 

if (rk < 0.25) then 

select Sk as one parent for crossover 

end 

k         k+1; 

end 

h         0; 

while (h<0.25) do 

randomly take two parents; 

rc         random number from  ],1[
1



N

N
NP ; 

while (rc ≠ 


N

N
NP

1

) do 

swap the genes; 

rc         rc +1; 

end 

h        h+1; 

end 
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end 

} 

Example: Let us assume as described in the proposed problem that there are five machines. In the 

example shown below each digit represents the operation and their corresponding machine 

employed for performing the operation. Considering two parent chromosomes consisting of 16 

genes each and the crossover point is selected randomly after 8TH gene. It can be represented as, 

 

Parent1 2 1 5 4 3 2 5 2 3 1 5 1 4 3 2 5  

Parent 2 1 2 1 2 4 3 1 4 3 2 5 1 5 3 4 2 

After performing the crossover operation by swapping the right parts of the genes, following the 

cut point with the other parent, the resulting child or offspring is obtained as, 

Child 1  2 1 5 4 3 2 5 4 3 2 5 1 5 3 4 2 

Child 2  1 2 1 2 4 3 1 2 3 1 5 1 4 3 2 5 

 

4.2.5 MUTATION 

Mutation is a background operator which produces spontaneous random changes in various 

chromosomes. It can be performed by altering one or more genes. The mutation rate (pm) is defined 

as the percentage of the total number of genes in the population. It controls the rate at which new 

genes are introduced into the population. If pm is too low many useful genes would never tried out, 

but if it is too high, there will be much random perturbation, the child generated will start loosing  

their resemblance to the parents, and the algorithm will loose the ability to learn from the history 

of search. The procedure for the random change mutation method is explained below:  

{ 

begin 

i          0 
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while (i <= pop_size *


N

N
NP

1

* pm) do 

select a chromosome randomly from [1, 


N

N
NP

1

*pop_size]; 

pick up two genes randomly; 

exchange their positions; 

i          i+1; 

end 

end 

} 

 
Example: To explain the mutation operation the same example is considered as used to explain the 

crossover operation. Assuming that there are five machines. Each digit in the chromosome 

represents the operation and the corresponding machine on which it is performed. Considering that 

3RD and 12TH gene are selected randomly for performing mutation. It can be shown as, 

           

Parent   2 1 2 5 3 2 4 3 1 4 5 4 1 2 3 5  

 Both the positions of the chromosome are swapped and the resulting child is represented as 

Child  2 1 4 5 3 2 4 3 1 4 5 2 1 2 3 5  

The child generated after mutation consists of 4 at position 3 and 3 at position 4.  

 

4.2.6 SELECTION 

After performing the crossover and mutation, the best child produced in each family is selected on 

the basis of some selection criteria for the next generation’s population. This selection criterion is 

inspired by the simulated annealing approach, which uses transition probability function to accept 

downhill moves escaping the entrapment at local minima.  

These criterions are: 

Fitness criterion: The next generation’s population is selected on the basis of the fitness value. If 

the offspring generated has fitness better than the parent, it will go to the next generation. This can 

be calculated as: 
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 ΔX = X2 – X1  where, X2 = fitness function of the best child in each   

             family 

     X1 = fitness function of the parent of that family 

If the difference of the functions ΔX comes out to be greater than zero, the best child is accepted as 

parent for new generation. 

Probabilistic Criterion: 

In some cases if the child has fitness value less than that of the parent of that family, there is given 

some probability for its acceptance, to escape the chances of entrapment in the local optimum. The 

Cauchy’s distribution function is used here to define the probability, as: 

  F (T (n), ΔX) =
22 )()(

)(

XnT

nT


, 

Where T (n) = temperature during nth generation. 

When F (T (n), ΔX) > γ, where γ is any random number in the interval [0, 1], then the substandard 

one moves to the next generation. 

 

 4.2.7 COOLING SCHEDULE: 

 Cooling schedule is of prime significance as it determines the value of transition probability 

function used during the selection criterion. In the present work the cooling schedule is defined as: 

   
))1(log(1

)1(*2.3
)(

nT

T
nT


  

Where T (1) = temperature for the 1ST generation. 

The search is started with a high temperature that results in a high probability of moving away 

from the best solution found till then. But the temperature declines as the search proceeds and at 

the end it is expected  to move away from a worse neighboring solution. 

 

4.2.8 TERMINATION CRITERION: 

The process is re-iterated for a finite number of times from the beginning. To terminate the search 

procedure the following termination criterion is incorporated: 

{ 

Begin 

n            n+1; 

if (n > max_no_gen) then 

terminate the search; 
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the final population with the best fitness is the optimal or sub-optimal solution; 

end 

end. } 

 

5. Results and Discussion  

The present section details the various results pertaining to underlying issue. The paper deals with 

a FMS model that is capable of performing a wide variety of operations. The model incorporates 

the flexibility measures to cope up with the underlying uncertainties. The authors have attempted 

to study the impact of those flexibility measures under such dynamic conditions in the FMS 

environment. The data sets for the mean repair duration, mean time between breakdowns, and 

processing time of the part types (Chan et al., 2004) for the machines are presented in Table (3), 

Table (4), and Table (5) respectively. Part inter-arrival times and distance between part types are 

shown in Table (6) and (7). After the intensive experimentations over the genetic parameters, the 

crossover probability is found to be 0.5 and mutation probability to be 0.01. The initial temperature 

was considered to be 500 and final temperature was found to 10 by the applied algorithm.  

<<Insert Table 3 about here>> 

<<Insert Table 4 about here>> 

<<Insert Table 5 about here>> 

<<Insert Table 6 about here>> 

<<Insert Table 7 about here>> 

The model consists of a set of five machines (Mf) working under such dynamic environment. Total 

eight different part types are to be processed on those machines. To study the impact of the 

uncertainties such as machine failure, the authors have constructed a breakdown scenario, which is 

represented in Table (8). The breakdown scenario consists of different parameters such as number 

of machines subjected to failures, time between the breakdowns, and the expected repair durations 

(E [RDjk]). The number of machines prone to breakdowns is given by ωMf, where ω is the fraction 

of machines subject to breakdowns. The authors have considered the values of ω to be 0.2 and 0.6. 

Thus, the total number of machines prone to failure ranges from 1 to 3 machines. The time 

between the breakdowns varies for different machines and it is exponentially distributed with mean 

ℓE [P jk], where E [P jk] is the expected processing time for operation k. The value of ℓ is 

considered to be 5 and 10. The repair durations also differ for each machine and are distributed 

with mean € E [RDm] where, value of € is considered to be 0.1 and 0.3. Thus, as per the Table (8) 
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the total eight different breakdown scenarios have been generated. To show the impact of 

flexibility on the flow time, the data sets are prepared with the incorporation of flexibility under 

the similar scenario. System performance is obtained for various levels of variability and it is 

achieved by gradually increasing the variance in the part inter-arrival times and processing times. 

The effect of flexibility shows a diminishing rate of return curve for all levels of variability, it also 

shows that effect of flexibility is particularly significant when either demand or processing 

variability is high. With increasing flexibility after certain level the flow time remains almost 

unaffected (figure 6). This diminishing effect of the flexibility has also been studied by Bobrowski 

et al. (1988) and Chen et al. (1991). In the highly flexible and dynamic environment considered in 

the present work, the authors have tried to find appropriate schedule for AGV routing. The time 

taken by the AGV to load the part and deliver to the central storage has been evaluated under the 

existing breakdown scenario. 

<<Insert Table 8 about here>> 

The computational results based on the above mentioned breakdown scenarios for the first 

objective function have been shown in Table (9).The average flow time and time taken by the 

AGV to load the part and deliver to the central storage has been evaluated under the same existing 

breakdown scenario and are presented in Table (10) and Table (11). The results of the data sets 

under such breakdown scenarios, after successive number of iterations reflect the superiority of the 

incorporated algorithm to converge towards the optimality. The results comparison of the average 

flow time with respect to the flexibility measures has been shown in figure (5) and (6).  The plot 

for the time taken by AGV versus the routing flexibility is shown in figure (7). The comparison of 

the machine priorities based on mean time between failures and distance between parts are shown 

in figure (8) and (9). 

<<Include Figure 5 about here>> 

<<Include Figure 6 about here>> 

<<Include Figure 7 about here>> 

<<Include Figure 8 about here>> 

<<Include Figure 9 about here>> 

<<Insert Table 9 about here>> 

<<Insert Table 10 about here>> 

<<Insert Table 11 about here>> 



 25

To evaluate the performance of the algorithm, the data sets and the relevant parameters have been 

organized into three categories known as small (S), medium (M) and large (L) data set. These 

parameter values are used for testing the performance of the QCSA algorithm and are presented in 

Table (12).  

<<Insert Table 12 about here>> 

The performance of the algorithm has been evaluated by a new parameter known as Percentage 

Heuristic Gap (PHG). It can be mathematically expressed as (Chan et al., 2007): 

                           PHG = 
100

boundlowerbest

) bound lower best - bound upper (best


                ... (26) 

 

Here, lower bound is calculated by relaxing some of the constraints in the objective function 

related to the existing problem, whereas the upper bound is the objective function value of any 

feasible solution satisfying all the constraints. From the definition of PHG, it can be clearly 

visualized that the near optimal solution of the problem is guaranteed if its value is very small. The 

PHG for small, medium, and large data sets are presented in Table (13)-(15). The variation of 

Heuristic Gap with the number of iterations has been shown in Figure (10). 

<<Insert Table 13 about here>> 

<<Insert Table 14 about here>> 

<<Insert Table 15 about here>> 

<<Insert Figure 10 about here>> 

Figure (10) clearly depicts that as the number of iterations increases Heuristic Gap constantly 

decreases and its very low value at the later stages assures the near optimal solution. These values 

also establish the efficacy of the proposed algorithm. The average Percentage Heuristic Gap’s for 

different problem sizes mentioned above are shown in Table (16).  

<<Insert Table 16 about here>> 

To statistically validate the results obtained by the QCSA algorithm the two ways ANOVA 

without replication was performed on the problem parameters. The results of the ANOVA test are 

provided in the Tables (17) and (18). The results of ANOVA test shows that the value of F crit < F, 

which proves the accuracy of the proposed algorithm under such breakdown scenarios. F test is 

carried out at 99.5% confidence level which is highly significant. Thus, it statistically validates the 

robustness of the algorithm. The proposed QCSA approach has been also compared with some 

standard priority rules and results are much better than those obtained from the priority rules 
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(Figure11). These comparisons show significant improvement in the results on applying the QCSA 

algorithm and the results converge towards the optimality nearly after (40) iterations. The 

programming for the considered problem have been coded in C++ and tested on Pentium IV, 

1.6MHZ processor, having 128 MB RAM.  

<<Insert Figure 11 about here>> 

  <<Insert Table 17 about here>> 

<<Insert Table 18 about here>> 

6. Conclusion  

This research presents the methodology of scheduling while there are various types of uncertainties 

involved in the manufacturing system. The performance of FMS has been optimized using the 

developed methodology that includes the flexibilities pertaining to resources such as machines and 

AGVs in uncertain environment. An extrapolative schedule has been generated to tackle the 

existing uncertainties such as machine breakdowns, deadlocks etc. in the FMS environment. The 

developed solution methodology provides the minimum average delay time and average flow time 

in an unpredictable environment. This has been indicated by plotting the graph for variation of 

flexibility with respect to system performance. The potential of QCSA in solving a complex and 

real time manufacturing system problem is highlighted in this paper. Performance of QCSA has 

been statistically validated using PHG and ANOVA analysis. The comparison with the standard 

priority rules further states the ability of the tested algorithm to converge towards the optimality. 

 

7. Future Research 

Although lot of work have been already done in this area, still the need of further improvisation of 

the system performance can be well viewed by the increasing trend of the complexities prevailing 

in the present scenarios. In our view the proposed approach can be extended to cover more 

practical situations which include the multistage scheduling of parts in uncertain FMS. The ability 

of the QCSA algorithm to converge towards the optimality in less computational time, and 

escaping the local optima, lefts its scope of further extension in other complex scenarios. The real 

time problems are more complex than those considered in this paper. Hence there is need of further 

study in this area involving more constraints and objective functions.  
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APPENDIX I 

Notation:  

Cjk  = completion time of operation k for part type j. 

Dj  = Distance between the part types. 

E [RDjk]  = Expected repair duration for operation k processed on machine m. 

Ej, k  = Starting time of operation k for part j. 

E (Ψm)  = expected flow time. 

fj  = mean time between failures. 

G(X)  = Gaussian probability distribution function. 

Gn1  = time taken by nth AGV to reach to the selected part. 

Gn  = time count for the nth AGV indicating time up to which the AGV is engaged 

 j   = number of part types to be machined  

k   = number of operations to be performed  

KT  = Part type counter.  

m  = number of machines. 

P jk   = processing time of part type j with respect to operation k. 

P(X)  = Poisson’s probability distribution function. 

Ps  = extrapolative schedule. 

mP   = priority of the machine.  

pm    = mutation rate 

S jk  = slack of operation k with respect to the part type j. 

TJj, k  = time count for part j processed by operation k indicating time up to which the part 

will be engaged or scheduled. 

TFn  = time taken for the nth AGV to reach the central storage from present position.  

THm    = time up to which the machine m will be engaged  

TAGVn  = total time taken by nth AGV to load, transport and load on the selected machine 

V (a, b)  = length of the longest path from a to b. 

Wjkm  = workload for part j processed by operation k on machine m 


m  = processing speed or capacity. 

n

kj ,   = minimum time by which partly processed part j processed by operation k will 

be ready for loading on nth AGV.  
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Y m   = mean repair duration on machine m.  

nY    = minimum time by which partly processed part j will be ready for loading on the 

nth AGV.      

Zjk  = delay time of part type j processed by operation k.  

a   = coefficient of variance of the processing time distributions. 

b   = coefficient of variance of the part inter-arrival time distributions. 

   = part arrival rate. 

λj  = part processing time of part j. 

μ  = ratio of processing time to the part inter-arrival time. 

m   = mean rate at which breakdowns occur. 

   = an increasing function of variability. 

   = an increasing function of flexibility. 

n  : number of generation 

T(n)  : temperature during the nth generation 

X1  : Fitness function of the parent of each family 

X2  : Fitness function of the best child in each family 

ΔX  : difference between the fitness function of the best child and the parent in   
    each family 

F (T (n), ΔX) : Cauchy distribution function defined as 
22 )()(

)(

XnT

nT


 

γ  : random number distributed uniformly between 0 and 1 

G  : maximum number of generation 

P  : size of population i.e. number of chromosomes in a population 
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Table 1: Priority table for machines on the basis of mean time between failures 

Machine Number Priority 

1 0.2258 

2 0.2903 

3 0.1290 

4 0.1613 

5 0.1935 

 

Table 2: Priority table for machines on the basis of distance from the selected part types 

 

 

 

 

 

 

 

Table 3: Mean repair durations on machines 

Machine Number Mean repair durations

1 35 

2 45 

3 20 

4 25 

5 30 

 

Table 4: Mean Time between failures 

Machines (m) Mean time between failures 

1 1940 

2 2000 

3 1850 

4 1720 

5 1640 

 

 

Machines (m) Priority 

1 0.066 

2 0.133 

3 0.200 

4 0.266 

5 0.333 
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Table 5: Processing Times for different Parts (Chan et al., 2004) 

Part 

Type 

Operation I Operation II Operation III Operation IV 

 M/C Time 

(min) 

M/C Time 

(min) 

M/C Time 

(min) 

M/C Time 

(min) 

1 1 

(2) 

15 

<18> 

3 24 

 

5 10 

 

2 

(1) 

30 

<25> 

2 2 

(3) 

20 

24 

3 

(2) 

10 

<16> 

5 35 4 25 

3 5 40 1 25 4 

(3) 

 

30 

<27> 

2 15 

4 4 30 2 30 5 20 3 

(1) 

25 

<15> 

5 1 10 3 20 2 

(5) 

15 

<20> 

4 30 

6 3 

(5) 

25 

<20> 

2 12 1 25 5 

(3) 

10 

<23> 

7 4 

(1) 

35 

<38> 

5 10 1 

(4) 

10 

<15> 

2 15 

8 5 

(4) 

15 

<10> 

4 

(5) 

40 

<30> 

3 25 1 20 

(): Alternative machine and <>: Corresponding machining time 
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Table 6: Part inter-arrival times 

Part types Inter-arrival times (min)

1-2 2 

2-3 4 

3-4 5 

4-5 8 

5-6 6 

6-7 3 

7-8 2 

 

 

Table 7: Distance Between the part types 

Part Types Distance Between the Part types (meters) 

1-2 4 

2-3 6 

3-4 8 

4-5 5 

5-6 2 

6-7 4 

7-8 3 
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Table 8: Machine Breakdown Scenario 

Breakdown Considerations Values Total combinations 

Number of machines prone to 

failure Mf 

ωMf 

 where  

ω = 0.2, 0.6 

2 

Time between breakdown Exp(ℓE [P jk]) 

Where 

 ℓ = 5, 10 

2 

Repair Durations € E [RDjk] 

where  

€ = 0.1, 0.5 

2 

Total parameter combinations (ω, ℓ, €) values 

S1 – (0.2, 5, 0.1) 

S2 – (0.6, 5, 0.1)  

S3 – (0.2, 5, 0.5) 

S4 – (0.6, 5, 0.5) 

S5 – (0.2, 10, 0.1) 

S6 – (0.6, 10, 0.1)  

S7 – (0.2, 10, 0.5) 

S8 – (0.6, 10, 0.5) 

8 

 

 

 Table 9: Average Delay times for various breakdown scenarios 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Average Delay Time 

Problem Class I (10) I (30) I (40) 

S1 – (0.2, 5, 0.1) 129.68 120.00 119.86 

S2 – (0.6, 5, 0.1) 103.36 96.01 95.35 

S3 –(0.2, 5, 0.5)  88.25 84.01 82.66 

S4 – (0.6, 5, 0.5) 70.56 67.20 66.66 

S5 – (0.2, 10, 0.1) 64.84 60.52 59.52 

S6 – (0.6, 10, 0.1)  51.84 48.94 48.19 

S7 – (0.2, 10, 0.5) 48.63 44.32 44.29 

S8 – (0.6, 10, 0.5) 38.88 36.44 36.14 
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Table 10: Average Flow times for various breakdown scenarios 

 

 

 

 

 

 

 

 

 

 

 

Table 11: Average delay time for AGV under various breakdown scenarios 

 

 

 

 

 

 

 

 

 

 

 

Table 12: Parameter values related to the data sets of problem 

Classification Number of Part types Number of Operations 

Small 
3 1-2 

4 2-4 

Medium 
5 4-6 

6 6-8 

Large 
7 8-10 

8 10-12 

Average Flow Time 

Problem Class I (10) I (30) I (40) 

S1 – (0.2, 5, 0.1) 40.922 39.627 38.988 

S2 – (0.6, 5, 0.1) 39.272 38.921 37.132 

S3 – (0.2, 5, 0.5) 41.200 38.945 38.265 

S4 – (0.6, 5, 0.5) 38.067 37.643 37.158 

S5 – (0.2, 10, 0.1) 36.457 35.940 34.663 

S6 – (0.6, 10, 0.1) 34.001 33.782 32.808 

S7 – (0.2, 10, 0.5) 42.049 38.419 37.614 

S8 – (0.6, 10, 0.5) 38.145 36.937 35.739 

Average Delay Time 

Problem Class I (10) I (30) I (40) 

S1 – (0.2, 5, 0.1) 24.882 21.499 21.205 

S2 – (0.6, 5, 0.1) 21.714 19.64 19.57 

S3 – (0.2, 5, 0.5) 23.32 20.855 20.612 

S4 – (0.6, 5, 0.5) 19.767 16.395 16.192 

S5 – (0.2, 10, 0.1) 22.532 19.212 19.015 

S6 – (0.6, 10, 0.1) 18.617 16.362 16.123 

S7 – (0.2, 10, 0.5) 17.719 15.668 15.572 

S8 – (0.6, 10, 0.5) 13.689 12.480 11.347 
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Table 13: Computational data for small sized data set 

Number of Part Types (j) Number of Operations (k) % Heuristic Gap (PHG) 

3 1 1.935 

3 2 1.595 

4 3 1.746 

4 4 2.012 

 

 

Table 14: Computational data for the medium sized data set 

Number of Part Types (j) Number of Operations (k) % Heuristic Gap (PHG) 

5 4 1.271 

5 5 2.975 

6 6 1.467 

6 8 3.015 

 

 

Table 15: Computational data for the large sized data 

Number of Part Types (j) Number of Operations (k) % Heuristic Gap (PHG) 

7 8 2.051 

7 9 2.145 

8 11 2.237 

8 12 2.225 

 

 

Table 16: Average Heuristic gap for different problem sizes 

Classification L H Average 

S 1.765 1.879 1.822 

M 2.123 2.241 2.182 

L 2.098 2.231 2.1645 
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Table 17: Intermediate values of the two-way ANOVA test without replication 

SUMMARY Count Sum Average Variance
Row 1 2 3.644 1.822 0.006498
Row 2 2 4.364 2.182 0.006962
Row 3 2 4.329 2.1645 0.008845

     
Column 1 3 5.986 1.995333 0.039946
Column 2 3 6.351 2.117 0.042508

 

 

Table 18: Results of ANOVA test. 

Source of Variation SS df MS F P-value F crit 
Rows 0.164808 2 0.082404 1642.608 0.000608 19
Columns 0.022204 1 0.022204 442.608 0.002252 18.51282
Error 0.0001 2 5.02E-05    
       

Total 0.187113 5         
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Storage) 
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Figure 1: Schematic layout of the FMS model

Five 
Units 
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Figure 2: Variability versus Poisson’s distribution function  
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Figure 3: Flexibility versus Gaussian distribution function 
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Assign number of generation  
Assign population size  

Assign maximum number of generation 
Initialize Temperature = 500 

Randomly generate 10 set of population size 
chromosomes (4X4 matrix) 

Compute the fitness (X1) for each parent 
subsequently for all the objective functions

Objective 1: 
 Compute the average delay time

defined in equation (6). 
 

Objective 2:  
 Compute the fitness of 

equation (8). 

Objective 3: 
 Compute the flow time, variability and 

flexibility defined in equation (7). 

 Associate time counters and initialize to zero 
TX = 0; TM = 0; Tg = 0 
 Calculate KT = jj ,k ∀∑  

 Prioritize all machines and calculate the following
 Select the highest priority machine 

 TAGVn = Gn2 + Gn3 +Gn4, n  

 Gn = TAGVn + max {(Gn + Gn1 ); TJj,k}; n  

 Choose nth AGV with minimum Gn 

Is the selected 
M/C is free at 

min Gn  

 TJj,k = min (Gn) + ,
,
m t

k jP  
 THm = TJj,k 

 THm = THm + ,
,
m t

k jP  

 TJj,p = THm  

Is it the last 
operation for 
selected part? 

 , , 1min{ }; , ,n
j k j k n j k nTJ G       

 nnnn TFGY  ;   

Remove the part counter for the 
part type KT = KT – 1 

KT = 0 

Min Yn  
  

Min n
j k  

Choose the part with 

Min ,
n

j k  

1

1 

Yes No 

STOP 

No Yes 

2 2 

2 

3 

No Yes

YesNo 
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2 2 2 

Produce children from each parent using, 
 Single point crossover and  
 Random Change mutation.  

 Compute fitness of each child of every family 
 Select best family having highest fitness value (X2) 

3 

Compute ΔX = X2 – X1. 

If 
(ΔX > 0 or 

F (T (n), ΔX) >  

Best child is accepted as parent for new generation The earlier one remain as new parent 

No Yes 

Reduce the temperature as per following cooling schedule: 

))1(log(1

)1(*2.3
)(

nT

T
nT


  

n = n + 1 

Select the best one of the final population 
according to having highest fitness value. 
This gives optimal or sub-optimal solution 

STOP 

Figure 4: Flow chart of algorithm over the undertaken problem 
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Figure 5: Flow time versus Flexibility (= 4, =.04)  
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Figure 6: Flow Time versus Flexibility (β=4, =.04) 
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Figure 7: Average time taken by AGV versus routing flexibility 
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Figure 11: Comparison of QCSA with standard priority rules 
 
 
 
 
 


