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A diagrammatic view of the equals sign: Arithmetical equivalence as a means, not an end 
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Abstract 

It is recommended in the mathematics education literature that pupils be presented with 

equality statements that can be assessed for numerical balance by attending to notational 

structure rather than computation. I describe an alternative, diagrammatic approach in which 

pupils do not assess statements but instead use them to make substitutions of notation. I report on 

two trials of a computer-based task conducted with pairs of pupils and highlight two findings. 

First, the pupils found it useful to articulate the distinct substitutive effects of commutative 

(‘swap’, ‘switch’) and partitional (‘split’, ‘separate’) statements when working on the task. 

Second, the pupils did not notice that some of the statements presented were in fact false, which 

suggests their substituting activities were independent of numerical equivalence conceptions. I 

argue this demonstrates that making substitutions offers task designers a mathematical utility for 

equality statements that is distinct from, but complementary to, assessing numerical balance. 
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Introduction 

In a world in which 15+28=44, what can be said about 15+29? In the following scenario, 

two Year 5 pupils (9 and 10 years) discuss the sum of 15 and 29, having been ‘told’ that 

15+28=44. 

Yaaseen: What’s 15 add, what’s 15 add, er, 29? 

Laura: Um, it’s 45. 

Yaaseen: 45? So we’re one off. 

Laura: Hmm. 

Researcher: How did you work that out so quickly? 

Laura: Um, because like that’s, um, 15 add 28. [15+28=44 is on the computer screen] 

Researcher: Yeah. 

Laura: So just 15 add 29, 28, plus one more is just 45. 

Laura did not view 15+28=44 as a question to be answered (‘is it true?’) but as a statement 

of ‘fact’ that she transformed in order to infer another ‘fact’ (15+29=45). In the study reported 

here, this distinction between presenting arithmetic statements as questions of numerical 

equivalence and presenting statements as given ‘truths’ for making transformations of notation is 

explored. 

Pupils’ conceptions of equality statements 

In a seminal study that has had a significant influence on subsequent research, Behr et al. 

(1976) claimed that children view the equals sign as an indicator of computational results rather 

than as expressing an equivalence relationship. The evidence for this is children’s reactions to a 

variety of presented forms, such as 2+3=7, 6=4+10, 3=3 and 2+3=3+2, in semi-structured 

interviews. Behr et al. noted a general tendency to impose a computational, left-to-right reading 
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on arithmetical statements that conforms to expression = numerals (where expression is any 

closed string of numerals and operator signs). Even those children who accepted variants, 

namely numerals = numerals, numerals = expression and expression = expression, attended to a 

computational reading of calculating expressions and comparing results. Similar results have 

been found since (e.g. Falkner, Levi and Carpenter 1999; Kieran 1981). This rigid adherence to 

left-to-right readings leads to a high computational burden for many primary pupils (Gray and 

Tall 1994) and can become deeply entrenched and resistant to change, persisting well into the 

later years of schooling (Behr et al. 1976; Kieran 1981; McNeil and Alibali 2005). This impedes 

later mathematical development, notably when symbolic algebra is introduced into the 

curriculum (Thomas and Tall 2001). Knuth and others (2006) found that at the start of secondary 

schooling “a relational view of the equals sign is necessary not only to meaningfully generate 

and interpret equations but also to meaningfully operate on equations” (309 – emphasis in 

original). 

Recent interventionist studies have investigated how pupils’ conceptions of the equals sign 

can be addressed by varying the notation presented in classrooms. For example, Molina, Castro 

and Mason (2006) focused on the use of computational shortcuts to establish numerical 

equivalence. They undertook a series of teaching interventions in which statements of various 

forms, such as 12+11=11+12, were presented to pupils and reported the emergence of various 

strategies for shortcutting computation including awareness of commutative and partitional (or 

de-compositional) properties. Other studies have included notational appeals to generalisation, 

such as exposing young pupils to statements that include ‘+0’ (Carpenter and Levi 2000), or 

employing letters to represent unknown amounts (Carraher et al. 2006). Pirie and Martin (1997) 

reported an intervention in which pupils initially worked with missing number statements of the 
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form __+__+18=__+53, and were later presented with similar statements in which the missing 

numbers were replaced by letters. The intention of these and other studies is that through the 

careful selection and variation of presented statements pupils will develop conceptions of the 

general properties of mathematical relations. Such studies have had positive results in 

broadening pupils’ acceptance and understanding of varied statement forms, including those not 

familiar to them, but the impact on longer term algebraic thinking remains an open empirical 

question (Carraher et al. 2006; Dörfler 2008; Linchevski and Livneh 1999; Tall 2001). 

Diagrammatic activities 

A common thread throughout the interventionist studies described above is the metaphor 

(implicit or explicit) of the equality statement as a balance with the task goal of establishing 

whether the notation on both sides represents the same number. The pedagogic rationale is that 

exposure to a variety of statement examples encourages a conceptual understanding of the 

mathematical relationships represented by arithmetical notation. This rationale carries an 

unstated assumption, widespread in mathematics education (Dörfler 2006), that external 

representations (arithmetical notation in this case) have a perfunctory role as a medium for 

abstract mathematical ideas. External representations are seen as tools for pupils, teachers and 

researchers to envisage and communicate otherwise imperceptible, intangible objects. Dörfler in 

fact argues that this presupposed hierarchy of abstraction over representation is a major factor in 

many learners’ difficulties with mathematics: 

“[Pupils] often fail to get close to those genuine objects which mathematics purportedly is 

all about, they believe they lack the necessary abilities to think ‘abstractly’, and they are 

convinced that they do not understand what they are expected to understand. They want to reach 

through the representations to the abstract objects but without success” (100). 
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He argues that mathematics education might be improved by sometimes reversing this 

hierarchy of abstraction and representation. In the case of written arithmetic this means that 

numerals and statement forms, rather than numbers and relationships, can become the very 

objects of learning activities. As Dörfler puts it, symbolic mathematics can be presented to 

learners as diagrams, or “amalgam[s] composed of an inscription [i.e. an artificial marking on a 

page or computer screen], a relational structure imposed on it and specific operation rules 

(including rules for interpretation)” (103). Mathematical domains including arithmetical 

notation, algebraic equations, graphs, geometrical constructions and so on can be presented as 

diagrams in this manner. In one sense the term diagram is being used more openly than everyday 

associations – which might be with ‘drawings’ rather than ‘writings’ – would suggest. In another 

sense, however, it is more restrictive, referring only to those inscriptions that form precise 

mathematical structures. In the spirit of Peirce (1976), Dörfler refers to learners’ constructions, 

transformations and experimentations with diagrams as diagrammatic activities (or 

diagrammatic reasoning). These diagrammatic activities provide educators with a view of 

pupils’ mathematics learning as an experimental activity, involving making empirical discoveries 

about physical inscriptions when transformed (or ‘manipulated’) according to formal operation 

rules. 

An equality statement presented as a diagram is no longer yet another example for 

encouraging the development of concepts corresponding to mathematical objects, but instead 

indicates future possibilities not yet realized. Learners detect patterns in their actions when 

transforming diagrams, and predict and observe the visual appearance of resultant, modified 

diagrams. The focus is on actions with inscriptions, mental or physical, rather than exposure to 

notated examples. Diagrammatic activity is also public and sharable due to its grounding in 
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observations (of diagrams) and articulated transformations. This centrality of collaboration and 

discussion renders mathematics learning observable and concrete to teachers and researchers, 

and mathematical objects (i.e. physical inscriptions) observable and concrete to pupils. For 

instructional designers the challenge is to present mathematics as diagrams such that pupils 

might engage with them in a collaborative and open manner. 

When pupils establish the truth status of equality statements of various forms they do of 

course engage in activities that are to some extent diagrammatic. The above interventionist 

studies demonstrate pupils articulating the structural properties of notation in reflective and 

flexible ways when establishing numerical balance. However, the essence of diagrammatic 

activities, which are based in seeing and articulating potential actions, is curtailed by the task 

goal of assessing truthfulness. Once a statement has been analysed to a learner’s satisfaction, its 

potential for further activity comes to an end and a new statement must be presented. In the 

remainder of this paper I describe and report on a task in which pupils used equality statements 

as tools for further diagrammatic activities, and demonstrate that they did not to attend to the 

truth or falsity of the statements when doing so. 

Arithmetical equivalence as a means 

 “The notion of equivalence goes hand in hand with the important mathematical idea of 

replacement. If two expressions are equivalent then one may be used to replace the other at any 

time. [Given 3×(2×4)=(3×2)×4 then] 3×(2×4) can replace (3×2)×4 or, if one finds the counting 

number equivalent (in this case 24), it can be used to replace the expressions” (Collis 1975, 17). 

Collis here seemed to imply that the equals sign can be both a symbol of numerical 

equivalence and a symbol of interchangeable notation. Similar definitions of a full conception of 

arithmetical equivalence have been made elsewhere (Freudenthal 1983; Gray and Tall 1994; 
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Kieran 1981; Linchevski and Livneh 1999; Skemp 1986). In this section I describe a task in 

which the equals sign means not ‘is the same as’ but instead ‘can be exchanged for’. Rather than 

establishing numerical equivalence, the intention is that pupils use arithmetical statements to 

make substitutions of notation. The proposed ‘can be exchanged for’ meaning for the equals sign 

is termed substitutive equivalence here to distinguish it from the numerical equivalence (‘is the 

same as’) meaning referred to elsewhere. 

The task is computer-based and presents a series of problems, presented to pupils as 

‘puzzles’ to solve, each comprising several arithmetical statements and a single arithmetical term 

in a box (Figure 1).  

Figure 1 here 

The software supports two basic functionalities. The first is clicking an equals sign which 

causes a statement to become highlighted (8+7=15 has been highlighted in Figure 1). In this 

sense the equals sign can be thought of as a handle for taking hold of a statement. The second 

functionality is clicking numerals and operator signs once a statement has been highlighted. This 

causes a substitution to take place, or not, as determined by the currently highlighted statement. 

For example, given the highlighted statement 8+7=15 in Figure 1, if the inscription 8+7 in the 

box is clicked then the outcome will be that shown in Figure 2. This functionality can be 

considered as a technological embodiment of substitutive equivalence. 

Figure 2 here 

Substitutions are reversible. If the inscription 15 in the box in Figure 2 is clicked while the 

statement 8+7=15 is still highlighted the situation returns to that shown in Figure 1.  

The arithmetical statements, then, are tools that can be used to manipulate the term in the 

box. Arithmetical statements can also be used to manipulate other statements. For example, if the 
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statement 8+7=15 is still highlighted and the inscription 15 in the statement 15+1=16 is clicked 

the latter will become 8+7+1=16. If the highlighted statement does not determine a substitution 

for a clicked inscription then nothing happens. For example, clicking the inscription +1 in the 

box while the statement 8+7=15 is highlighted will have no effect. The goal for each puzzle 

presented by the software is to transform the term in the box (referred to as the ‘sum’ in trials) 

into a number (referred to as the ‘answer’ in trials). The inscriptions in the software form a 

diagram by virtue of the relations determined by the operation rules (interface functionalities) set 

out above. The software’s two functionalities of selecting statements (clicking =) and testing 

terms (clicking 0,1,2,3,4,5,6,7,8,9 or +) allow random experimentation. However, in order to 

progress and use the software strategically, it is necessary to engage in the diagrammatic 

activities of iconic matching and substituting. Iconic matching is searching for visually identical 

inscriptions, and is forced by the embedded operation rule ‘A=B acts on occurrences of A or B’ 

where A and B are any two inscriptions. For example , … Substituting is clicking on an 

inscription A such that it becomes B (or vice versa) as determined by a highlighted statement 

A=B. For example, …This operation rule provides a formal definition of substitutive 

equivalence. 

Iconic matching and substituting characterise the nature of the observations and 

manipulations seen to be made by pupils during the trials reported below. At first glance this 

design rationale perhaps offers a barren vision of notating activity, involving a tiresome 

procedure of hunting for visual matches and clicking them, with no need for further engagement. 

Indeed, if one has a clear grasp of the operational rules, this is the most efficient method for 

completing a puzzle. However, as the data illustrate, learners find the puzzles challenging and 

motivating (see also Jones 2007b). Furthermore, when working in pairs and encouraged to advise 
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one another, learners strive to construct an overall shared sense of the diagrams, and their often 

surprising models provide insights into mathematical thinking (Jones 2007a).  

Background Work and Approach 

Previous trials with pairs of Year 5 children (9- and 10-year-olds) suggested that the 

software and task promote the diagrammatic activities of iconic matching and substituting (Jones 

2007b). It was also found that pupils inferred commutative (‘swapping’, ‘switching’) of 

a+b=b+a statements, and partitional (‘splitting’, ‘separating’) readings of c=a+b and a+b=c, 

statements from their distinct transforming effects. The trials reported in this paper build on these 

findings to investigate whether substitutive equivalence meanings for arithmetical statements are 

dependent on or independent of numerical equivalence meanings. 

The software offers the possibility to explore the relationship between numerical and 

substitutive equivalence as a result of the operational rule stated above: ‘A=B acts on occurrences 

of A or B’ where A and B are any two inscriptions. It has no bearing whether A and B are 

conventional arithmetical inscriptions or not, and if they are, whether they are numerically 

equivalent or not. As such, puzzles can contain false equalities (Figure 3), and yet the term in the 

box (numerals and operators) in the box can still be reduced to a numeral (without operators) 

through inscription manipulation.  

Figure 3 here 

In the trials reported here, the software was set up to present a sequence of eleven puzzles 

containing up to nine arithmetical statements. The first two puzzles contained only two 

compositional statements each and are intended to familiarise learners with operating the 

software. Puzzle 3 introduces a commutative statement and Puzzle 6 introduces a partitional 

statement. Note that the terms compositional, commutative and partitional are used here only to 
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indicate inscriptions of the forms a+b=c, a+b=b+a and c=a+b respectively. Puzzles 7 to 11 

combine compositional, commutative and partitional statements and are increasingly 

complicated. Puzzles 1 to 7 contain only true statements. Puzzle 8 (Figure 4a) contains the first 

false statement (15+28=44), which is subtle in that it is only imbalanced by 1. Puzzle 9 (Figure 

4b) contains two false equalities. Puzzle 10 (Figure 4c) contains three numerical false equalities, 

two of which are less subtle than those in Puzzles 8 and 9. Puzzle 11 (Figure 3) contains blatant 

false equalities and a large computational disparity between the term in the box (143+77) and the 

‘solution’ (23). 

Figures 4a, 4b, 4c here 

These puzzles are slight modifications from those used in the previous trials described 

above (Jones 2007a; Jones 2007b) and alternative designs would have been possible. First, all 

statements could have been false equalities from the start, or at least introduced much earlier 

during the trials. However, judging by previous trials, such a design would not allow the pupils 

sufficient time to become familiarised with the functionality of the software and nature of the 

task. Second, the imbalance of false equalities could have been introduced less gradually. For 

example, the first false equality met, 15+28=44 (in Puzzle 8), could have been, say, 15+28=1. 

However, it was felt initial opportunities should be provided for pupils to notice subtle 

imbalances as this would be more informative about the degree of their sensitivities to numerical 

equivalence during the trials.  Third, place-value partitions and compositions were used less than 

in previous trials because their patterns of repeating digits would make them obvious when 

imbalanced and would not have allowed the gradual introduction of false equalities (e.g. 

41=40+2 compared to 41=27+15).  
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The generality of the children’s activity is not of interest here and no scaling up or attempt 

to generalise across a statistical population is intended. Neither is learning or knowledge transfer 

a direct focus. The purpose of the trials was theoretical: to establish the possible outcomes of 

tasks in which the equals sign means ‘can be exchanged for’. As such, the task was artificially 

polarised to investigate the whether the pupils attended substitutive equivalence as opposed to 

numerical equivalence. This was not done to find out which meaning for the equals sign is ‘best’, 

but to provide a ‘window’ (Noss and Hoyles 1996) on pupils conceptions of substitutive 

equivalence in order to analyse them within a research trials context.  

Participants, Trial Design and Analysis 

Two trials are reported and commonalities across the data are identified. Both trials took 

place in economically disadvantaged inner-city areas with English as a second language for the 

majority of pupils. Trial 1 involved two primary school children, Laura (female, 9 years 11 

months) and Yaaseen (male, 10 years 5 months), and lasted a total of 35 minutes. The children 

had limited classroom exposure to partitional (c=a+b) forms several months prior to the trial and 

no previous classroom exposure to commutative (a+b=b+a) forms. Laura and Yaaseen were 

deemed ‘mathematically able’ by their class teacher (‘able’ pupils were requested because they 

were thought to be more likely to to uinderstand the nature of the tasks quickly, and therefore to 

generate data relevant to the research focus in a single trial). Trial 2 involved two secondary 

school children, Ajay (male, 12 years 8 months) and Nikisha (female, 12 years 9 months), and 

lasted a total of 39 minutes. The children had 16 months experience of secondary algebra prior to 

the trial (excluding school holidays). Their school separates Year 8 children into eight 

achievement sets and Ajay and Nikisha were in the ‘top’ set. The disparity in ages between the 
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two trails enables the possible effects of classroom mathematics experience on diagrammatic 

activity to be considered.  

The collaborative essence of diagrammatic activities meant single participant trials were 

not appropriate; at the same time, the exploratory nature of the study meant group or whole class 

trialing were not appropriate either. As such, paired trials arose as the default design. My role 

during these trials was to show children how to operate the software, prompt for verbal 

elaborations (as in ‘Why do you think that didn’t work?’) and offer encouragement and praise. 

The composite data of naturalistic discourse and onscreen diagrammatic transformations 

generated by the task provided a window onto the children’s mathematical meaning-making 

(Noss and Hoyles 1996). These data were captured as screen-movies of the children’s 

interactions along with an audio track of their discussion. The audiovisual movies were then 

transcribed using the qualitative analysis software package Transana (Woods and Fassnacht 

2007). The first stage of analysis involved sifting the data for examples of computational 

readings (e.g. ‘7 and 7 make 14’ for the inscription 7+7), pattern matching (e.g. ‘we need to find 

another 7+7’), commutation (typically using the verbs ‘swap’ and ‘switch’) and partition 

(typically ‘split’ and ‘separate’). Ambiguous cases were not included in the analysis and are not 

reported here. The second stage, which is of key interest here, involved fine analysis of the 

children’s dialogue when using false equalities to make substitutions, or discussing their possible 

effects, and in particular looking for evidence of attending to computation and truth assessment. 

Findings 

The transcript excerpts presented below are intended to evidence the pupils’ (i) 

diagrammatic activities of iconic matching (searching for visually identical inscriptions) and 

substituting (describing or predicting transformations); (ii) articulation of commutative and 
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partitional meanings for different statement forms; (iii) lack of attention to the truth or falsity of 

arithmetical statements. 

Trial 1 

Year 5: Laura (female, 9 years 11 months); Yaaseen (male, 10 years 5 months)  

Laura and Yaaseen were confident and talkative and got to grips quickly with the 

functionality of the software during the first two puzzles. After Laura discovered that 15+1=16 

transforms the inscription (15+1) into the numeral (16), thereby completing Puzzle 2, I asked 

why it had worked (R is for ‘researcher’). Yaaseen gave a computational explanation (15+1 

equals 16) but Laura then offered an iconic matching explanation (15+1 is in both the statement 

and the box): 

1. R: Do you know why that one worked? 

2. Yaaseen: ’cause that’s … 

3. Laura: Oh, ‘cause that’s 15 add 1 [unclear]. 

4. Yaaseen: That equals the 16. 

5. Laura: Yeah. 

6. R: Okay, and what did you say Laura, sorry? [Yaaseen had a louder voice than Laura] 

7. Laura: Um, because like that one’s 15 add 1. 

8. Yaaseen: And that’s all the sum.  

9. Laura: And that’s what it says in the box. 

The next evidence for iconic matching coincided with the first evidence for commutative 

awareness (‘the opposite’, ‘swap’, ‘switch’) during Puzzle 3, which presents 9+1 in the box and 

the statements 1+9=10 and 1+9=9+1.  

10. Yaaseen: 9 plus 1, eh? 
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11. Laura: Equals 10. 

12. Yaaseen: Click the equals and all that first. No, I think you have to get it, that one 

[1+9=9+1], that’s the opposite. 

13. R: What’s the opposite? 

14. Yaaseen: Of this one. ’cause that says 9 plus 1. 

15. R: Oh I see what you’re saying. 

16. Yaaseen: And 1 plus 9. 

17. Laura: It’s because like that one you have to swap ’em around. 

18. R: Sorry, what did you say Laura? 

19. Laura: Um, because like that was 9 add 1 and that one’s 1 add 9, um, that one had to be 

switched round for it, for that to say 1 add 9. 

From then on commutative readings occurred regularly throughout the trial. The children 

used the word ‘swap’ a total of 29 times and ‘switch’ 16 times when referring to a+b=b+a forms 

or expressing a wish to transform occurrences of a+b into b+a.  

Evidence for a partitional reading (‘separate’, ‘split’) first occurred during Puzzle 6 (box: 

30+41; statements: 41=40+1, 70+1=71, 30+40=70) which contains the first c=a+b form. 

Yaaseen inferred a partitional meaning for the statement 41=40+1 before actually using it. 

20. Laura: Um, that box equals 71. 

21. Yaaseen: That’s harder. 

22. Laura: You need 30 add 41. 

23. Yaaseen: 70, let me try that. Separate them two [40 and 1]. Let me try separating these 

two. And then … 

24. Laura: Yeah, then that [30+40=70]. And then that one [70+1=71]. 
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25. Yaaseen: Easy! That’s easy. It’s getting easier and easier. 

Throughout the trial the children used the word ‘separate’ a total of 3 times and ‘split’ 10 

times in reference to the transformational effects of partitioning statements. There was also one 

occurrence of Yaaseen using the phrase ‘split them two back together’ when expressing a wish to 

transform an occurrence of a+b back into its original form c. Taken together, these emergent 

substitutive partitional and commutative readings of c=a+b and a+b=b+a forms provided the 

children with a powerful strategy for making sense of and solving increasingly complicated 

puzzles. They started each of Puzzles 7 to 11, which contain compositional, commutative and 

partitional forms, by identifying c=a+b statements in order to break sums up into constituent 

elements and then used a+b=b+a and a+b=c statements to reorder and compose these elements. 

This same strategy was also reported in a previous trial with a different pair of Year 5 children in 

a suburban school situated in a predominately professional class area (Jones 2007a).  

Over the duration of the trial the children’s discourse displayed an increasingly 

sophisticated sense of the onscreen diagrams. The following excerpt illustrates how commutation 

became a means for enabling further substitutions. 

26. Yaaseen: If we can swap them two around. 

27. Laura: Yeah. 

28. Yaaseen: And swap them with the 33 so we can get the 50 and 11. 

29. Yaaseen: Go on, that one. 

30. Laura: Huh? 

31. Yaaseen: That one. 

32. Yaaseen: Now swap them two around. Now you can get 50 add 11. 
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Laura and Yaaseen did not comment on the false equalities in Puzzles 8 to 11 (Figures 3, 

4a, 4b, 4c above). This is not positive evidence that they were oblivious to these numerical 

imbalances, they may have spotted them and simply not mentioned them. However, two excerpts 

from the transcript suggest this was not the case. The first is when they were momentarily stuck 

on Puzzle 8 and Laura gave the incorrect result 45 in response to Yaaseen. Her justification for 

this result suggests she had not noticed the falsity of 15+28=44; and Yaaseen’s acceptance of her 

result suggests he had not noticed it either. 

33. Yaaseen: What’s 15 add, what’s 15 add, er, 29? 

34. Laura: Um, it’s 45. 

35. Yaaseen: 45? So we’re one off. 

36. Laura: Hmm. 

37. R: How did you work that out so quickly? 

38. Laura: Um, because like that’s, um, 15 add 28. [in 15+28=44] 

39. R: Yeah. 

40. Laura: So just 15 add 29, 28, plus one more is just 45. 

The second observable lack of attention to numerical equivalence occurred during the 

final puzzle (Puzzle 11, Figure 3) in which many statements are very imbalanced. After working 

at the puzzle for two and a half minutes, and then getting momentarily stuck, Yaaseen began 

attending to the computational value of the term, which had so far been transformed from 

143+77 to 50+52+11. It seems Yaaseen readily accepted that this value can vary without finding 

this variation peculiar or attributing it to the falsity of the onscreen statements. 

41. Yaaseen: 50, you can’t, you can’t swap ’em round for some reason. Can’t, that’s the, 

what’s the ans …  
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42. Laura: The answer. So … 

43. Yaaseen: What’s … 

44. Laura: 113 … [i.e. 50+52+11] 

45. Yaaseen: 143 add 77 is a hundred and … 230. So we need to get to that answer. So far 

we’ve got, er, 113. So we’re nearly … 

Puzzle 11 is complicated and despite the children’s determination and successful 

emerging strategy they worked on it for a further two minutes before solving it. It was only then, 

when the box contents (143+77) had been transformed into a single numeral (23), that they 

finally noticed something amiss with one of the statements (52+80=23). 

46. Yaaseen: 80 add 52. Yeah make fift … ah there! Go on, do that. Then there’s, is there 

eigh … 

47. Laura: 80 add 52.  

48. Yaaseen: So you’ve got to swap them around there. 

49. Laura: Yeah. 

50. Yaaseen: Then we’re done [23 appears in the box]. And that’s it. Easy! 

51. Laura: Nope. Yeah? 

52. Yaaseen: What?! The answer’s not 23 is it? Is that right? 

53. R: Well, what do you think? 

54. Yaaseen: Yeah, ’cause we, that’s the wrong answer isn’t it? Uh?! 52 add 80 is not 23! 

Trial 2 

Year 8: Ajay (male, male, 12 years 8 months ); Nikisha (female, 12 years 9 months)  

Ajay and Nikisha were confident and talkative and got to grips immediately with the 

functionality of the software during the first puzzle. They engaged with the diagrammatic 
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activities of iconic matching and substituting quickly with no apparent attention to computational 

readings. After Ajay efficiently solved Puzzle 3 (box: 1+9; statements: 9+1=10 and 1+9=9+1) 

with confident guidance from Nikisha, I asked Nikisha how she had known what to do. 

55. R: How did you see that Nikisha, because you seemed quite sure.  

56. Nikisha: ’cause, erm, the first one, it said 1 plus 9 and on there it said 9 plus 1 and over 

here it says that they’re the same. So if you change that to m … to tell the, it’s the same 

thing. You can change that to make the answer. 

57. R: Okay. Did you follow that Ajay? 

58. Ajay: Yes, I was following it. 1 plus 9, if you change it to 9 plus 1. And 9 plus 1 equals 

10. 

The children completed the first ten puzzles efficiently and confidently taking only ten 

minutes to do so. Most of their discussion during this time related to the functioning of the 

software. For example, the following excerpt is from the 25 seconds it took them to complete 

Puzzle 5 (box: 6+5+3; statements: 5+6=11; 11+3=14; 5+6=6+5). 

59. Nikisha: You click the equals sign 

60. Ajay: Yeah. 

61. Nikisha: And then do that one. Then you can make that 11. Click on that equals sign. And 

then do the 5 plus 6. And then 11 plus 3. Equals sign. 

For Puzzles 7 to 11, which include compositional, partitional and commutative 

statements and are increasingly complex, Ajay and Nikisha adopted the same strategy as Laura 

and Yaaseen from Trial 1. This involved starting with c=a+b statements in order to break sums 

up into constituent elements and then using a+b=b+a and a+b=c statements to reorder and 

compose the elements into a final numeral. Unlike Trial 1, however, there was little explicit 
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discussion of this strategy and no specific vocabulary to distinguish composing, partitioning and 

commutating; the pupils instead used the generic term ‘change’ when referring to substitution. 

Also, unlike the younger children in Trial 1, their activity was far more based in visual search 

than substitution making. Their approach, while speedy, was characterised by observation not 

manipulation, and they rarely highlighted statements or clicked numerals and operators in an 

exploratory manner. 

Despite this, Puzzle 11 (Figure 3) caused them significant difficulties and took a total of 

eighteen minutes to solve (interestingly, it took the Year 5 children in Trial 1 only four and a half 

minutes). During this struggle their diagrammatic activity was mainly contemplative but they 

came up against what they perceived to be dead ends and refreshed the puzzle and started again a 

total of six times. They also used the term ‘swap’ a total of 24 times during Puzzle 11 when 

referring to a+b=b+a statements or expressing a wish to transform occurrences of a+b into b+a, 

despite not having used it at all for Puzzles 1 to 10. Only Nikisha used the term ‘split’ (two 

times) to express a wish to transform occurrences of c into a+b. Both times this was in reference 

to using the statement 43+11=65 to transform 65 back into its original form of 43+11 rather than 

in reference to c=a+b statements. 

Ajay and Nikisha’s discussion displayed their increasingly sophisticated thinking towards 

the later stages of the trial. The following two excerpts illustrate how they imagined the effects 

of sequences of substitutions several steps ahead.  

62. Nikisha: Might have to make 65 and then [pause] then split it back. 

63. Ajay: If you can get 80 first. And then 80, and if we get 52 and then 52 that will change it 

to 52 add 80. 52 add 80 equals 23. 
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64. R: Something you said a minute ago about if you make the 65 and then split it back. 

What did you mean by that? 

65. Nikisha: Because you couldn’t get the positioning right so if you have the two numbers to 

make 65 which is 11 and 43 and then if you can move the 65 somewhere out and then 

split it again then you might get it. 

The children did not comment on the presence of false equalities in Puzzles 8 to 10. 

Neither did they not notice their presence in Puzzle 11 until they had been working at it for ten 

minutes and thirty seconds and Nikisha said: 

66. Nikisha: Why does it say 50 add 11 equals 80? 

67. R: What do you mean? 

68. Nikisha: 50 add 11 equals 80. [pause] It doesn’t. It equals 61 [unclear]. 

69. R: Had you spotted that before or just now? 

70. Nikisha: Before. I don’t know why I didn’t say it. 

71. R: Um? 

72. Nikisha: I didn’t say it before. 

73. R: And is that the only one that’s strange? 

74. Nikisha: [pause] No there’s that one as well. Equals 54. Some of them are right and some 

aren’t. 

75. R: And what about on the other puzzles? Are any of, were they all right or were they, 

were some of those wrong? 

76. Nikisha: I don’t know. I didn’t really look at the sums, to the answers, then. 

When I asked Nikisha when she had first noticed that 50+11=80 is wrong she answered 

‘about one or two minutes [before explicitly saying so]’. However, neither Nikisha nor Ajay 
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seemed concerned by the presence of numerical non-equivalences and immediately continued 

working on the puzzle. During a brief semi-structured interview immediately after the trial I 

asked what the children made of the presence of such statements. 

77. R: What about these sums being wrong. Do you know why that's like that in the puzzle? 

78. Ajay: Because it’s, um, because the puzzle’s different to like adding and stuff like that, 

yeah? And, um, the puzzle, the aim of it, yeah, is to like get that number and, um. I can't 

explain it but I know why though. 

79. Nikisha: It's about your method. And not about the actually like … 

80. Ajay: Yeah, adding. 

Discussion 

The diagrammatic activities of iconic matching (searching for visually identical 

inscriptions) and substituting (describing or predicting transformations) stand out as a common 

strand across both trials. In Trial 1 these activities manifested themselves most notably as 

commutative (‘swap’, ‘switch’) and partitional (‘separate’, ‘split’) descriptions of the distinct 

substitutive effects of a+b=b+a and c=a+b (or a+b=c) statements. In Trial 2 the pupils made 

fewer distinctions of form during Puzzles 1 to 10 and referred to all transformations simply as 

‘change’. However, commutative readings became explicit when they struggled for a sustained 

period during Puzzle 11 and, to a lesser extent, so too partitional readings. 

The ‘can be exchanged for’ meaning of the inscription = was a means rather than an end 

in two ways. The first is the potentiality of each equality statement to make substitutions. The 

second is the potentiality of the resultant transformed diagram for making further substitutions 

(turns 26-32 and 62-65). Such potentialities towards a specified purpose have been termed 

mathematical utilities within the context of pedagogic task design (Ainley, Pratt and Hansen 
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2006). The data suggest that substitutive equivalence, as embodied by the software and task 

goals, offers a genuine utility for notating tasks. 

The key finding is that the pupils distinguished the different transforming effects of 

statements, but did not articulate their truth or falsity. This suggests that substitutive equivalence 

meanings were independent of numerical equivalence meanings during the trial. How, then, 

should we regard the recommendation in the literature that an (implicit or explicit) ‘is the same 

as’ meaning should be promoted? Certainly, this recommendation must be heartily endorsed 

given the strong evidence and persuasive arguments for making it. However, in the light of the 

findings reported here, it may be that it is incomplete, having been derived from studies in which 

children analyse statements as an end in itself. As such, an ‘is the same as’ meaning may have 

certain limitations for task design, and the claim that such a meaning is necessary (rather than 

merely sufficient) for understanding and manipulating equations (Kieran 1992; Knuth et al. 

2006) is challenged within the context of the trials by the pupils’ lack of attention to numerical 

equivalence when making transformations of notation (turns 33-40; 46-54; 66-76; 77-80). The 

data presented here offer no direct evidence that the children lacked an ‘is the same as’ meaning 

of the equals sign per se as this was not tested, but rather that such a meaning was not explicitly 

cued during the task. 

The recommendation that pupils should be presented with a variety of statement forms 

must also be endorsed, and indeed was embodied in the diagrams presented by the software. 

However, as a stand alone design rationale, the variation of form risks promoting a basic 

relational meaning for the equals sign if pupils simply compute both sides and check the results 

are equal (Baroody and Ginsburg 1983). Researchers are aware of this and select statements in 

which internal structure (such as place-value partition) readily reveals numerical balance without 
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need for calculation. The recommendation made here is that designers might also consider 

selecting and presenting statements in terms of their transformational effects, rather than just 

their internal structure, as a complementary way to draw pupils’ attention to form. 

Concluding remarks 

It could be countered that the ‘can be exchanged for’ meaning for the equals sign is 

problematic because the pupils worked with ‘nonsense’ puzzles containing errors and therefore 

their activity was superficial. My argument however is that this disconnect demonstrates that the 

‘can be exchanged for’ meaning is independent of the ‘is the same as’ meaning. Whereas 

‘exchanging’ has mathematical utility for distinguishing statements by form, ‘sameness’ has 

utility for discerning truthfulness. A duality of substitutive and numerical meanings for the 

equals sign might offer learners novel ways to consider mathematical notation. For example, the 

inscription 2+4 appears in both 2+45=47 and 2+4×5=22 and yet may not be substituted using 

2+4=4+2 in either case. Furthermore, if robust and flexible, it is speculated that dual meanings 

for the equals sign might better prepare learners for the transition from arithmetical to algebraic 

notating at the start of secondary schooling, although this conjecture would require further 

investigation.. 
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Figure 1: The software used in the study 

 

Figure 2: Making a substitution 

 

Figure 3: Puzzle containing false equalities 



28 

 

Figure 4a: Puzzle 8  

 

Figure 4b: Puzzle 9 
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Figure 4c: Puzzle 10 

 




