
University of Huddersfield Repository

Qin, Yongrui, Sheng, Quan Z., Falkner, Nickolas J. G., Yao, Lina and Parkinson, Simon

Efficient Computation of Distance Labeling for Decremental Updates in Large Dynamic Graphs

Original Citation

Qin, Yongrui, Sheng, Quan Z., Falkner, Nickolas J. G., Yao, Lina and Parkinson, Simon (2016)
Efficient Computation of Distance Labeling for Decremental Updates in Large Dynamic Graphs.
World Wide Web Journal. ISSN 1386145X

This version is available at http://eprints.hud.ac.uk/id/eprint/29768/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or notforprofit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Huddersfield Repository

https://core.ac.uk/display/74211474?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

World Wide Web manuscript No.
(will be inserted by the editor)

Efficient Computation of Distance Labeling for
Decremental Updates in Large Dynamic Graphs

Yongrui Qin · Quan Z. Sheng · Nickolas
J.G. Falkner · Lina Yao · Simon
Parkinson

Received: date / Accepted: date

Abstract Since today’s real-world graphs, such as social network graphs, are
evolving all the time, it is of great importance to perform graph computations
and analysis in these dynamic graphs. Due to the fact that many applications
such as social network link analysis with the existence of inactive users need
to handle failed links or nodes, decremental computation and maintenance for
graphs is considered a challenging problem. Shortest path computation is one
of the most fundamental operations for managing and analyzing large graphs.
A number of indexing methods have been proposed to answer distance queries
in static graphs. Unfortunately, there is little work on answering such queries
for dynamic graphs. In this paper, we focus on the problem of computing the
shortest path distance in dynamic graphs, particularly on decremental updates
(i.e., edge deletions). We propose maintenance algorithms based on distance
labeling, which can handle decremental updates efficiently. By exploiting prop-
erties of distance labeling in original graphs, we are able to efficiently maintain
distance labeling for new graphs. We experimentally evaluate our algorithms
using eleven real-world large graphs and confirm the effectiveness and effi-
ciency of our approach. More specifically, our method can speed up index
re-computation by up to an order of magnitude compared with the state-of-
the-art method, Pruned Landmark Labeling (PLL).

Keywords Shortest Path · Graph Computation · Distance Labeling ·
Dynamic Graph

Yongrui Qin and Simon Parkinson are with School of Computing and Engineering, Univer-
sity of Huddersfield, UK
Quan Z. Sheng and Nickolas J.G. Falkner are with School of Computer Science, The Uni-
versity of Adelaide, Australia
Lina Yao is with School of Computer Science and Engineering, The University of New South
Wales, Australia
Corresponding Author: Yongrui Qin, E-mail: y.qin2@hud.ac.uk

2 Yongrui Qin et al.

1 Introduction

Recent years have witnessed the fast emergence of massive graph data in many
application domains, such as the World Wide Web, linked data technology,
online social networks, and Web of Things. In a graph, one of the most funda-
mental problems is the computation of the shortest path or distance between
any given pair of vertices. For instance, distances or the numbers of links be-
tween web pages in a large web graph can be considered a robust measure
of web page relevancy, especially in relevance feedback analysis in web search
[21]. In RDF graphs of linked data, the shortest path distance from one entity
to another is important for ranking entity relationships and keyword querying
[18,15]. For online social networks, the shortest path distance can be used to
measure the closeness centrality between users [22,23].

A large body of indexing techniques have been recently proposed to pro-
cess exact shortest path distance queries in graphs [9,24,8,7,2,26,16]. Among
them, a significant portion of indexes are based on 2-hop distance labeling,
which is originally proposed by Cohen et al. [11]. The 2-hop distance label-
ing pre-computes a label for each vertex so that the shortest path distance
between any two vertices can be computed by giving only their labels. These
labeling indexes, such as [9,7,2,16], prove to be efficient when processing large
graphs with edge numbers up to hundreds of millions.

Motivation. The above mentioned approaches generally make the assump-
tion that graphs are static. However, in reality, many graphs are subject to
constant changes. For example, it is reported that in the fourth quarter of 2012,
Facebook reached 1.056 billion users amounted to a 24.97% increase from the
same period in 2011 [14]. Around April 2013, DBpedia, one of the most popu-
lar RDF graphs, released its version 3.9. In this new release, an overall increase
in the number of concepts in the English edition changed from 3.7 million to
4.0 million things compared with its last release in June 20121. Similarly, the
emerging social Web of Things also supports the need for dynamic graph data
management because smart things are normally moving and their connectivity
could be intermittent, leading to frequent and unpredictable changes in the
corresponding graph models [10,25].

We believe that it is imperative to design novel algorithms that can update
shortest path indexes efficiently for large dynamic graphs. Existing shortest
path indexing techniques based on 2-hop labeling may take up to hundreds
of seconds to pre-compute the whole shortest path index for a graph with
millions of edges. For larger graphs, it can take up to thousands of seconds
[2,16]. Applying indexing techniques designed for static graphs directly to
dynamic graphs may lead to inefficiency. This is because that if only a small
part of the graph is changed, i.e., only a deletion of an existing edge occurs, a
significant proportion of the shortest paths are likely to remain unchanged and
the index for the original graph may contain a large amount of correct distance

1 http://wiki.dbpedia.org/

Efficient Computation of Distance Labeling for Decremental Updates 3

information. In such case, simply recomputing the 2-hop distance index from
scratch would unnecessarily waste computing resources.

An alternative is to maintain dynamic all-pairs shortest paths (APSP).
Many approaches have been proposed to maintain dynamic APSP data struc-
tures. For example, in [12,13], a dynamic algorithm for general directed graphs
with non-negative edge weights was proposed with a computational complexity
of O(n2 log3 n), where n is the number of vertices. However, this time bound is
comparable to recomputing all-pairs shortest paths from scratch, which makes
the algorithm inefficient for handling changes in graphs. Recently, an algo-
rithm for maintaining dynamic all-pairs (1+ ε) approximate shortest paths for
directed graphs with polynomial weights is proposed in [5]. The total update
complexity is Õ(mn/ε), where n is the number of vertices and m is the number
of edges. Unfortunately it only applies to dynamic approximate shortest path
problems.

Incremental updates (i.e., edge insertions) of 2-hop labeling in large dy-
namic graphs have been recently investigated in [3]. However, the problem of
supporting decremental updates (i.e., edge deletions) of 2-hop labeling still
remains unsolved and is considered a challenging problem [3]. Decremental
updates are very useful in the presence of many real-world problems such as
outdated web links in a web graph or obsolete user profiles in a social network.
Clearly, decremental maintenance is a fundamental and important operation
on graph data to support efficient web link analysis and social network anal-
ysis.

Contributions. To address the deficiency of existing shortest path indexing
techniques, this paper proposes a generic framework to update shortest path
indexes efficiently for dynamic graphs where edge deletions are allowed. As an
initial attempt on this challenging issue, we focus on unweighted, undirected
graphs. Similar to other distance labeling based indexing methods [2,16], our
method can be extended to weighted and/or directed graphs. We highlight our
main contributions in the following:

– We present the concept of well-ordering 2-hop distance labeling and identify
its important properties that can be utilized to design update algorithms
for shortest path indexes in dynamic graphs.

– We analyze cases of shortest path index maintenance in dynamic graphs
with decremental updates. We develop the corresponding theorems as well
as novel algorithms to enable efficient updates without reconstruction of
distance labeling for the entire graph.

– We conduct extensive experiments on eleven real-world large graphs to ver-
ify the efficiency and effectiveness of our method. Compared with the state-
of-the-art technique [2] which is designed for static graphs, our method is
on average an order of magnitude faster.

The rest of this paper is organized as follows. In Section 2, we review the
related work. In Section 3, we present some preliminaries on 2-hop distance
labeling. We then present the framework and the details of our approach in

4 Yongrui Qin et al.

Section 4. In Section 5, we report the results of an extensive experimental study
using eleven large graphs from real-world. Finally, we present some concluding
remarks in Section 6.

2 Related Work

In this section, we review the major techniques that are most closely related
to our work.

Distance labeling has been an active research area in recent years. In [9],
Cheng and Yu exploit the strongly connected components property and graph
partitioning to pre-compute 2-hop distance cover. However, the graph parti-
tioning process introduces high cost because it has to find vertex separators
recursively. Hierarchical hub labeling (HHL) proposed by Abraham et al. [1] is
based on the partial order of vertices. Smaller labeling results can be obtained
by computing labeling for different partial order of vertices. In [17], Jin et al.
propose a highway-centric labeling (HCL) that uses a spanning tree as a high-
way and based on the highway, a 2-hop labeling is generated for fast distance
computation.

Very recently, the Pruned Landmark Labeling (PLL) [2] is proposed by
Akiba et al. to pre-compute 2-hop distance labels for vertices by perform-
ing a breadth-first search from every vertex. The key is to prune vertices
that have obtained correct distance information during breadth-first searches,
which helps reduce the search space and sizes of labels. Further, query perfor-
mance is also improved as the number of label entries per vertex is reduced.
IS-Label (or ISL) is developed by Fu et al. in [16] to pre-compute 2-hop distance
label for large graphs in memory constrained environments. ISL is based on
the idea of independent set of vertices in a large graph. By recursively remov-
ing an independent set of vertices from the original graph, and by augmenting
edges that preserve distance information after the removal of vertices in the
independent set, the remaining graph keeps the distance information for all
remaining vertices in the graph. Apart from the 2-hop distance labeling tech-
nique, a multi-hop distance labeling approach [7] is also studied, which can
reduce the overall size of labels at the cost of increased distance querying time.

Tree decomposition approaches have been recently investigated [24,4] for
answering distance queries in graphs. Wei proposes TEDI [24], which first
decomposes a graph into a tree and forms a tree decomposition. A tree de-
composition of a graph is a tree with each vertex associated with a set of
vertices in the graph, which is also called a bag. The shortest paths among
vertices in the same bag are pre-computed and stored in bags. For any given
source and target vertices, a bottom-up operation along the tree can be exe-
cuted to find the shortest path. An improved TEDI index is further proposed
by Akiba et al. in [4] that exploits a core-fringe structure to improve index
performance. However, due to the large size of some bags in the decomposed
tree, the construction time for a large graph is costly and thus such indexing
approaches cannot scale well.

Efficient Computation of Distance Labeling for Decremental Updates 5

Fig. 1 A graph example

The above studies focus on point to point shortest path distance process-
ing. Some studies also investigate other types of distance queries, such as
single-source shortest path (SSSP) distance queries. For example, Cheng et
al. propose VC-index [8], a disk-based method for processing SSSP distance
queries based on the concept of vertex cover. Highways-on-Disk (HoD) is also
proposed in [26] to support SSSP distance queries for directed graphs. HoD
reduces I/O and computation costs for query processing by augmenting a set
of auxiliary edges or shortcuts in the original graphs.

HOPI (2-HOP-cover-based Index) developed by Schenkel et al. in [20] is
designed to speed up connection or reachability tests in XML documents based
on the idea of 2-hop cover. HOPI introduces index maintenance for both in-
sertions and deletions of nodes, edges or even XML documents. To the best
of our knowledge, HOPI is the first work on maintenance of 2-hop labeling.
Recently, maintenance of 2-hop labeling for large graphs has also been studied
by Bramandia et al. in [6]. However, all these studies focus on reachability
queries and are based on 2-hop labeling but not on 2-hop distance labeling.
Hence they cannot be applied to dynamic 2-hop distance labeling.

The most related work is proposed very recently by Akiba et al. in [3]. In
that work, incremental updates (i.e., edge insertions) of 2-hop labeling indexes
are investigated. To support fast incremental updates, outdated distance la-
bels are kept, which will not affect the distance computation in the updated
graphs in the incremental case. However, for the decremental case (i.e., edge
deletions), this approach will not work, as outdated distance labels must be
removed first and then some necessary labels of the 2-hop labeling index need
to be recomputed. Another piece of research work [19] adopts a similar strat-
egy and proposes a supplementary index structure called SIEF to support
single-failure on edges. The SIEF index only updates the original distance
labeling index with necessary new distance information for each single-edge
failure case. To be specific, the outdated distance labels in the original index
are kept but additional labels are constructed to provide updated distance
information for a specific edge failure. However, the SIEF approach cannot
handle multi-edge failures or a sequence of edge failures in the same graph.
The support of decremental maintenance on multi-edge failures is the focus of
our work in this paper.

6 Yongrui Qin et al.

3 Preliminaries

3.1 2-Hop Distance Labeling

The technique of 2-hop cover can be used to solve reachability problems (using
reachability labels) and shortest path distance querying problems (using dis-
tance labels) in graphs. Since our work focuses on the shortest path distance
querying problems, we adopt distance labels with the 2-hop cover technique.
We specifically refer to it as 2-hop distance labeling or 2-hop distance cover.

Assume a graph G = (V,E), where V is a set of vertices and E is a set
of edges. For each vertex v ∈ V , there is a pre-computed label L(v) which is
a set of vertex and distance pairs (u, δuv). Here u is a vertex and δuv is the
shortest path distance between u and v. Given such a labeling for all vertices
in G, denoted by L, for any pair of vertices s and t in G, we can have

dist(s, t, L) =min{δvs + δvt|(v, δvs) ∈ L(s)

and (v, δvt) ∈ L(t)}
(1)

If L(s) and L(t) do not share any vertices, we have dist(s, t, L)=∞. The dis-
tance between any given vertices s and t in G is denoted by dG(s, t). If we
have dG(s, t) = dist(s, t, L) for all s and t in G, we call the labeling result L a
2-hop distance cover.

3.2 Well-Ordering 2-Hop Distance Labeling

Definition 1 Well-Ordering 2-Hop Distance Labeling2 For a connected
graph G, there exists a sequence of vertices σ =< v0, v1, v2, . . . , vn−1 >. We
denote the order of any vertex vi as σ[vi] and we have σ[vi] = i for the above
given vertex sequence. Each vertex vi has a distance labeling L(vi), and the
labeling result L of all vertices forms a 2-hop distance cover of G. For any
pair of vertices vi and vj , given that σ[vi] < σ[vj], then vj is not in L(vi)
and vi may be in L(vj). We call such a 2-hop distance cover a well-ordering
2-hop distance labeling. Alternatively we say that a 2-hop distance cover has
well-ordering property. �

Similar concepts of well-ordering 2-hop distance labeling also appear in
recent research efforts such as PLL [2], and ISL [16]. This confirms that well-
ordering 2-hop distance labeling is important in the related research area.
More importantly, we will show in this paper that the well-ordering property
is also a basic concept in the design of update algorithms for distance labeling
computation in dynamic graphs.

In a graph containing multiple connected components, suppose its 2-hop
labeling is L. For any pair of vertices u and v in different connected compo-
nents, we can assert that L(u) and L(v) do not share any vertex according to

2 Note that, this concept is a special case of hierarchical labeling proposed in [1].

Efficient Computation of Distance Labeling for Decremental Updates 7

Table 1 2-Hop Distance Labeling L

Label Entries
L(0) (0,0)
L(1) (0,1) (1,0)
L(2) (0,1) (2,0)
L(3) (0,1) (2,1) (3,0)
L(4) (0,1) (1,1) (4,0)
L(5) (0,2) (1,1) (2,1) (5,0)
L(6) (0,2) (2,2) (3,1) (4,2) (6,0)
L(7) (0,2) (2,2) (3,1) (6,1) (7,0)
L(8) (0,1) (4,1) (6,1) (8,0)
L(9) (0,3) (2,3) (3,2) (4,3) (6,1) (9,0)
L(10) (0,4) (2,4) (3,3) (4,4) (6,2) (9,1) (10,0)

the definition of 2-hop cover. Each connected component has its own vertex or-
ders. For such a graph, we will have separate vertex orders for each connected
component. We denote a connected component containing vertex u as C(u).
If u and v belong to the same connected component, we have C(u) = C(v).

Figure 1 shows an example graph with 11 vertices and Table 1 shows a well-
ordering 2-hop distance labeling result L for the graph (L can be constructed
by PLL [2] using the same vertex ordering as that specified in the table). In
the table, the order of vertices is < 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 >. Take L(5) as
an example to further explain the idea of well-ordering 2-hop distance labeling.
L(5) is the label of vertex 5. By the well-ordering property, label entries in
L(5) can only contain vertices 0, 1, 2, 3, 4 and 5. Since label entries containing
vertices 3 and 4 are redundant in L(5) (this will be explained in more details
later in this section), label entries in L(5) only contain vertices 0, 1, 2 and 5.

3.3 Properties of Well-Ordering 2-Hop Distance Labeling

Technically speaking, if we index all-pairs shortest paths using a labeling
method, we will obtain an index that occupies O(n2) disk space. This index
can be considered as a special 2-hop distance cover labeling. Obviously, the
space complexity of this is too high for large graphs. Constructing a minimal
2-hop distance cover labeling has been proven to be NP-hard [11]. Therefore,
an alternative way to obtain labeling results with reduced sizes is by using
heuristic methods [9,7,2,16]. Well-ordering 2-hop distance labeling is one of
the techniques that can help to design efficient algorithms for constructing
shortest path distance labeling indexes and for index maintenance. We list its
useful properties in the following. For more details, please refer to [1].

Lemma 1 (Abraham et al. [1]) Given a well-ordering 2-hop distance labeling
L of a connected graph G, suppose s, t, u ∈ G and u has minimum vertex order
σ[u] among all shortest paths between s and t. Then we must have (u, δus) ∈
L(s) and (u, δut) ∈ L(t) and dist(s, t, L) = δus + δut.

8 Yongrui Qin et al.

Take vertices 1 and 6 in Figure 1 as an example. Paths p1 =< 1, 0, 8, 6 >,
p2 =< 1, 0, 3, 6 > and p3 =< 1, 4, 8, 6 > are all the shortest paths between
vertices 1 and 6. Vertex 0 is the one with minimum order along all these paths.
From Table 1 we can see that both vertices 1 and 6 contain a label entry (0, δ).
We can also easily check that dist(1, 6, L) = δ0,1 + δ0,6 = 1 + 2 = 3.

Lemma 2 (Abraham et al. [1]) Given a well-ordering 2-hop distance label-
ing L of a connected graph G, suppose σ[u] < σ[v]. If there is a label en-
try (u, δuv) ∈ L(v), we must have for any label entry (r, δrv) ∈ L(v), (1)
δuv ≤ δrv + dist(r, u, L); (2) if σ[r] < σ[u] and δuv = δrv + dist(r, u, L) then
(u, δuv) ∈ L(v) is a redundant label entry.

Take label entries of vertex 5 in Table 1 as an example. We have σ(3) < σ(5)
and σ(2) < σ(3). We also have δ3,5 = 2 = δ2,5 + δ2,3. Therefore (3, 2) is a
redundant label entry in L(5), which can be removed from L(5).

3.4 Brief Introduction of PLL

The Pruned Landmark Labeling (PLL) [2] performs Breadth-First-Search (BFS)
at each vertex in a given graph to generate 2-hop labels. The main idea is that
when labeling a vertex v with a BFS rooted at u, if the current labeling in-
formation, i.e, the sum of distances drv and dru that were calculated during a
previous BFS rooted at r, has already provided the correct distance between v
and u, then v can be pruned in the current BFS. Take Figure 2 as an example.
Suppose vertex order of vertices r, u, v is σ(r) < σ(u) < σ(v). We run BFS
rooted at r first and obtain distances d1 and d2. At a later stage, we run BFS
rooted at u (Note that at the beginning of this BFS, r has been pruned since
a BFS rooted at r has been completed) and if d3 >= d1 + d2, we prune v
from the rest of the current BFS process. As more BFSs proceed, pruning can
be seen more and more frequently, which contributes to the high efficiency of
labeling using the PLL method.

PLL can also be used together with the bit-parallel technique [2] for further
accelerating the indexing process. When bit-parallel is applied in PLL, t times
of full BFSs will be performed and all distance information on each vertex
will be kept in the labeling process for the first t runs of BFSs. This means
that no pruning will happen for the first t roots. To exploit parallel computing
during the labeling for these first t roots of BFSs, the bit-parallel technique
will be able to label up to a fixed number of neighbors (e.g., up to 32 or
64 neighbors) in a batch mode when processing one vertex. For more details
about this bit-parallel technique, please refer to [2].

4 Distance Labeling Maintenance in Dynamic Graphs

In this section, we first provide an overview of our update method. We then
analyze different cases of the 2-hop distance labeling maintenance in dynamic

Efficient Computation of Distance Labeling for Decremental Updates 9

Fig. 2 The Pruned Landmark Labeling (PLL) concept demonstration

graphs and introduce a set of algorithms to handle index updates. Proofs of
correctness of our algorithms are also presented.

4.1 Approach Overview

Our approach on decremental updates can be divided into two main stages.
In the first stage, called IDENTIFY, we identify possible and real affected
vertices, invalid label entries, and missing label entries. In the second stage,
called UPDATE, we remove all invalid label entries from real affected vertices
and relabel all real affected vertices based on the collected information of the
invalid label entries and missing label entries.

Before the detailed discussions of our algorithms, suppose that the deleted
edge is (u, v) in G, and the resulted graph is G′, we define the following nec-
essary concepts for the maintenance:

– Possible affected vertices PA(u): for any vertex s, if dG(s, v) = dG(s, u)+1,
then s ∈ PA(u).

– Possible affected vertices PA(v): for any vertex s, if dG(s, u) = dG(s, v)+1,
then s ∈ PA(v).

– Real affected vertices RA(u): for any vertex s, if s ∈ PA(u) and dG′(s, v) 6=
dG(s, u) + 1, then s ∈ RA(u).

– Real affected vertices RA(v): for any vertex s, if s ∈ PA(v) and dG′(s, u) 6=
dG(s, v) + 1, then s ∈ RA(v).

– Invalid labels IL(u): suppose t ∈ RA(u), for any vertex s ∈ RA(v), if there
is a label entry (s, δ) ∈ L(t), then s ∈ IL(u).

– Invalid labels IL(v): suppose t ∈ RA(v), for any vertex s ∈ RA(u), if there
is a label entry (s, δ) ∈ L(t), then s ∈ IL(v).

– Missing labels ML(u): suppose t ∈ RA(u), for any vertex s ∈ PA(v), if
(s, δ) is a redundant label entry in L(t) and there is a label entry (s′, δ′) ∈
L(t) where s′ ∈ IL(u) and (s′, δ′) makes (s, δ) redundant in L(t), then
s ∈ML(u).

– Missing labels ML(v): suppose t ∈ RA(v), for any vertex s ∈ PA(u), if
(s, δ) is a redundant label entry in L(t) and there is a label entry (s′, δ′) ∈
L(t) where s′ ∈ IL(v) and (s′, δ′) makes (s, δ) redundant in L(t), then
s ∈ML(v).

10 Yongrui Qin et al.

Algorithm 1: Identify affected vertices

Input: G, (u, v), distance vectors du, dv , d′u, d
′
v

Output: PA(u), PA(v), RA(u), RA(v)
1: Initialize flag m[t]← 0 for any vertex t in G
2: m[u]← 1
3: Q← ∅
4: Enqueue u into Q
5: while Q is not empty do
6: Dequeue t from Q
7: for all neighbor vertex r of t do
8: if m[r] = 0 then
9: if dv [r] = du[r] + 1 then

10: Enqueue r into Q
11: PA(u)← PA(u) ∪ {r}
12: if d′v [r]! = du[r] + 1 then
13: RA(u)← RA(u) ∪ {r}
14: m[r]← 1
15: Repeat the above steps by mapping u← v and v ← u to identify PA(v) and RA(v)

We will show later that the induced sub-graph by PA(u) in G can be
considered as a tree rooted at u. We will also show that the induced sub-
graph by PA(v) in G can be considered as a tree rooted at v. Furthermore,
PA(u)

⋂
PA(v) = ∅.

To be specific, PA(u)∪PA(v) contains all vertices whose distance to some
other vertex might have been changed due to the update. In other words,
at least one shortest path starting from these vertices contains edge (u, v).
RA(u)∪RA(v) contains all vertices whose distance to some other vertex must
have been changed due to the update. In other words, there exists one and
only one shortest path from these vertices to some other vertex containing
edge (u, v). IL(u) ∪ IL(v) contains all vertices that appear in some vertices
in RA(u) ∪ RA(v) as an outdated label entry due to the update. Finally,
ML(u) ∪ ML(v) contains all vertices that become a missing label entry in
some vertices in RA(u) ∪ RA(v) due to the update. Later in this section, we
will look into some examples of all these concepts.

4.2 Decremental Maintenance

4.2.1 Algorithms

Consider the deletion of an edge between vertices u and v in graph G,
which results in a new graph G′. There are two cases after the deletion, namely
Case (1): u and v are still connected in G′, and Case (2): u and v becomes
disconnected in G′. Figure 3 depicts an example of decremental maintenance
process.

For Case (1), at the IDENTIFY stage, we develop Algorithm 1 to iden-
tify PA(u), PA(v), RA(u) and RA(v) and Algorithm 2 to identify IL(u),
IL(v), ML(u) and ML(v). Note that distance vectors du, dv, d

′
u and d′v can

Efficient Computation of Distance Labeling for Decremental Updates 11

(a) Deletion of edge (0,8) (b) Deletion of edge (6,9) after Case (a)

Fig. 3 A graph decremental maintenance example (the updated label entries are in blue;
outdated label entries are in red)

be obtained using the Breadth-First-Search (BFS) algorithm. At the UPDATE
stage, we first remove all invalid label entries for all other vertices in RA(u)
and RA(v) using Algorithm 3 and then we use a modified PLL (Pruned Land-
mark Labeling) technique [2] to relabel affected vertices. The whole process
dealing with Case (1) is depicted in Algorithm 4.

Case (a) of Figure 3 shows an example. After deleting edge (0, 8), we can
identify according to Algorithm 1 that PA(0) = {0, 3, 2, 1, 5} and PA(8) =
{8}3 since the distances between vertices 0, 3, 2, 1, 5 and vertex 8 might have
been changed due to the edge deletion. We also identify that RA(0) = {0, 2} as
only these two vertices have changed their distance to vertex 8 and similarly,
RA(8) = {8}.

Based on RA(0) = {0, 2} and according to Algorithm 2, we have IL(8) =
{0} since (0, 1) ∈ L(8) while (2, 2) /∈ L(8) ((2, 2) is a redundant label entry
due to the existence of (0, 1) in L(8)). Based on IL(8), we can identify that
ML(8) = {1, 2, 3}, as label entries (1, 2), (2, 2) and (3, 2) are redundant in
L(8) due to the existence of (0, 1). Now (0, 1) becomes invalid in L(8), and
thus distances between vertex 8 and vertices 1, 2, 3 cannot be computed via
the original L(8) anymore. Therefore, according to Steps 7 and 8 in Algorithm
2, we have ML(8) = {1, 2, 3}. After relabeling, we have the updated label for
vertex 8: L′(8) = {(0, 2)(1, 2)(3, 2)(4, 1)(6, 1)(8, 0)}. Note that, (2, 3) is not in
the updated L′(8) as it is a redundant label entry.

It is worth mentioning that we identify IL(8) and ML(8) at vertex 8 only,
which is one end of the deleted edge. We will later show that they are exactly
IL(8) and ML(8) for any vertex in RA(8) in Lemma 6 and Lemma 7. At
the UPDATE stage, we firstly remove all invalid label entries in RA(0) and
RA(8) according to IL(0) and IL(8). Then we perform a modified PLL BFS
algorithm rooted at each vertex in IL(u)∪ IL(v)∪ML(u)∪ML(v). Here, the

3 Note that, we use a BFS manner to identify PA(0) and PA(8) in Algorithm 1 as we
will show later that all vertices in PA(0) will appear consecutively in Lemma 5.

12 Yongrui Qin et al.

Algorithm 2: Identify invalid labels and missing labels

Input: G, (u, v), L, PA(u), PA(v), RA(u), RA(v)
Output: IL(u), IL(v), ML(u), ML(v)
1: Initialize IL(u), IL(v), ML(u), ML(v) as empty sets
2: for all vertex t in RA(u) do
3: if (r, δ) ∈ L(t) and r ∈ RA(v) then
4: IL(u)← IL(u) ∪ {r}
5: if (r′, δ′) ∈ L(t) and r′ is first vertex in L(t) where σ(r) < σ(r′) then
6: for all vertex w where σ(r) < σ(w) < σ(r′) and w ∈ PA(v) do
7: if (r, δ) made w a redundant label entry in L(t) then
8: ML(u)←ML(u) ∪ {w}
9: Repeat the above steps by mapping u← v and v ← u to identify IL(v) and ML(v)

modification of PLL algorithm [2] refers to that if a vertex already contains a
label entry of the root vertex, we just move forward and no new label entry
will be added. Otherwise, a normal process of PLL algorithm will be applied.

For Case (2), at the IDENTIFY stage, it is obvious that we have PA(u) =
RA(u) = C ′(u) and PA(v) = RA(v) = C ′(u). Here, C ′(u) and C ′(v) refer to
the two connected components of the updated graph. We simply let IL(u) =
RA(v) and IL(v) = RA(u). At the UPDATE stage, we just remove all invalid
label entries for all real affected vertices using Algorithm 3. The whole process
of dealing with Case (2) is depicted in Algorithm 5.

Case (b) of Figure 3 shows an example. When deleting edge (6, 9), we have
IL(9) = RA(6) = C ′(6) and IL(6) = RA(9) = C ′(9). We first delete invalid
label entries for vertices in RA(6), where label entries contain vertices in IL(6).
In our example, no such label entries have been found. Then we delete invalid
label entries for vertices in RA(9), where label entries contain vertices in IL(9).
Take vertex 9 as an example, its label L(9) = {(0, 3)(2, 3)(3, 2)(4, 3)(6, 1)(9, 0)}
contains five invalid label entries: (0, 3)(2, 3)(3, 2)(4, 3)(6, 1). This is because
vertices 0, 2, 3, 4, 6 are in IL(9). Then Algorithm 5 removes all these invalid
label entries from vertex 9. Similarly, invalid label entries in L(10) can be iden-
tified and removed. After updates are completed, we get two labels updated,
which are L′(9) and L′(10), ten invalid label entries in total and no new label
entries. These are shown in Case (b) of Figure 3.

4.2.2 Proof of Correctness

Lemma 3 After the deletion of edge (u, v) from graph G, for any vertex s, t
in G′, we must have dG′(s, t) ≥ dist(s, t, L).

Proof: In the old graph G, there are only two types of shortest paths: (1)
shortest paths containing edge (u, v); and (2) shortest paths not containing
edge (u, v). For the former, we have dG′(s, t) ≥ dG(s, t) = dist(s, t, L). For the
latter, we have dG′(s, t) = dG(s, t) = dist(s, t, L). Thus the lemma is proved.

ut

Efficient Computation of Distance Labeling for Decremental Updates 13

Algorithm 3: Remove invalid label entries for real affected vertices

Input: L′, RA(u), RA(v), IL(u), IL(v)
Output: Updated L′

//Remove invalid label entries for real affected vertices rooted at u
1: for all vertex s ∈ RA(u) do
2: for all label entry (r, δr) ∈ L′(s) do
3: if r ∈ IL(u) then
4: Remove (r, δr) from L′(s)

//Remove invalid label entries for affected vertices rooted at v
5: for all vertex s ∈ RA(v) do
6: for all label entry (r, δr) ∈ L′(s) do
7: if r ∈ IL(v) then
8: Remove (r, δr) from L′(s)

Algorithm 4: Update L after deleting an edge (u, v) (C ′(u) = C ′(v))

Input: G′, L, (u, v)
Output: The updated 2-hop labeling L′

1: L′ ← L
2: Identify PA(u), PA(v), RA(u) and RA(v)using Algorithm 1
3: Identify IL(u), IL(v), ML(u) and ML(v) using Algorithm 2
4: Remove invalid label entries using Algorithm 3
5: Update label entries for all vertices in RA(u) ∪RA(v) by performing a modified PLL

BFS algorithm [2] on each vertex r ∈ IL(u) ∪ IL(v) ∪ML(u) ∪ML(v) in G′ (in the
ascending order of σ[r])

Algorithm 5: Update L after deleting an edge (u, v) (C ′(u) 6= C ′(v))

Input: G′, L, (u, v)
Output: The updated 2-hop labeling L′

1: L′ ← L
2: IL(u)← C′(v)
3: IL(v)← C′(u)
4: Remove invalid label entries based on IL(u) and IL(v)

Lemma 4 After the deletion of edge (u, v) from graph G, for any vertex s, t
in G′, if dG′(s, t) > dist(s, t, L), and suppose a shortest path between s and t
in G is πG(s, t), then we must have uv ∈ πG(s, t) or vu ∈ πG(s, t).

Proof: This can be proved by contradiction. Suppose we have dG′(s, t) >
dist(s, t, L) but uv /∈ πG(s, t) and vu /∈ πG(s, t), which means edge (u, v)
does not appear in πG(s, t). In such case, there must exist a path PG′(s, t)
in G′ where πG(s, t) = PG′(s, t). This means dG′(s, t) must be at most the
length of PG′(s, t), i.e., the length of πG(s, t). Thus, we must have dG′(s, t) =
dist(s, t, L′) ≤ dG(s, t). This contradicts our assumption dG′(s, t) > dist(s, t, L).

ut

Lemma 5 After the deletion of edge (u, v), for any vertex w in G′, suppose
w is a possible affected vertex, i.e. w ∈ PA(u) or w ∈ PA(v). Without loss
of generality, we assume w ∈ PA(u). Then there must exist a certain shortest

14 Yongrui Qin et al.

path between w and v containing edge (u, v) in the original graph, where each
internal vertex is a possible affected vertex.

Proof: Since w ∈ PA(u), we must have that dG(r, v) = dG(r, u) + 1, which
means that any shortest path between w and u, denoted as pwu, plus edge
(u, v) in the original graph must also be a shortest path between w and v.
Hence, there must exist a certain shortest path between w and v containing
edge (u, v) in the original graph and we can denote it as pwv = pwu + (u, v).

Note that the internal vertices of pwv must be on path pwu. And since these
internal vertices must also have a certain shortest path to vertex v containing
edge (u, v), they must also be possible affected vertices in PA(u) like w. ut

Note that, according to Lemma 5, PA(u) and PA(v) can be considered as
trees rooted at u and v, respectively. Moreover, we must have PA(u)

⋂
PA(v) =

∅. This is because otherwise, any vertex r in PA(u)
⋂
PA(v) must have dG(r, v) =

dG(r, u) + 1 and dG(r, u) = dG(r, v) + 1, which is impossible. Similarly, RA(u)
and RA(v) are also trees rooted at u and v, respectively. This is because by
definition, vertices in RA(u) or in RA(v) must be on the only shortest path to
some other vertex via edge (u, v). Hence, vertices in RA(u) or in RA(v) must
be trees rooted at u and v, respectively. Lemma 5 forms the basis of Algorithm
1.

Lemma 6 After the deletion of edge (u, v), for any vertex w in RA(u) (or
RA(v)), if L(w) contains an outdated label entry (r, δ), then r ∈ IL(u) (or
IL(v)) and L(u) (or L(v)) must also contain an outdated label entry (r, δ′).

Proof: Let us take vertex u as an example (a similar proof applies to v).
To prove that r ∈ IL(u), by definition, we need to show that r ∈ RA(v).
Since (r, δ) is outdated in L(w), we must have that edge (u, v) must appear
in some shortest path between r and w according to Lemma 4. Then we have
dG(r, u) = dG(r, v) + 1, and hence r ∈ PA(u). Since (r, δ) is outdated, there
must be only one shortest path between r and w. Then after the deletion of
edge (u, v), we must also have dG′(r, u)! = dG(r, v)+1, which means r ∈ RA(v).
Therefore, we have r ∈ IL(u).

Next we need to prove L(u) must also contain an outdated label entry
(r, δ′). According to Lemma 1, r must be the vertex with minimum order
along the only single shortest path between r and w, where u is also on the
path. Hence L(u) must also contain a label entry (r, δ′). Since r ∈ RA(v), it
must be an outdated label entry in L(u). Hence, the lemma is proved. ut

Lemma 7 After the deletion of edge (u, v), for any vertex w in RA(u) (or
RA(v)), if L(w) contains a missing label entry (r, δ) because some label entry
in L(w) becomes invalid, then r ∈ ML(u) (or ML(v)) and L(u) (or L(v))
must also contain a missing label entry (r, δ′).

Proof: We take vertex u as an example (a similar proof applies to v). To prove
that r ∈ML(u), by definition, we need to show that r ∈ PA(v). Since (r, δ) is
a missing label entry due to some outdated label entry in L(w), we have that

Efficient Computation of Distance Labeling for Decremental Updates 15

edge (u, v) must appear in some shortest path between r and w according to
Lemma 4. Then after the deletion of edge (u, v), we have dG(r, u) = dG(r, v)+1,
and hence r ∈ PA(u). Therefore, we have r ∈ML(u).

Next we need to prove L(u) must also contain a missing label entry (r, δ′).
Suppose (r′, δ′) is the outdated label entry in L(w) that makes (t, δt) a missing
label. Then according to Lemma 1, t must be the vertex with minimum order
along the only single shortest path between r and w, where u is also on the
path. Hence L(u) must also contain a label entry (t, δ′t). Since r ∈ PA(v), edge
(u, v) must appear in some shortest path between r and w, which means (r, δ′)
will become redundant due to the existence of (t, δ′t) in L(u). Therefore, (r, δ′)
must be an missing label entry in L(u). Hence, the lemma is proved. ut

Acoording to Lemma 6 and Lemma 7, in order to identify all invalid label
entries and missing label entries, we only need to check vertices u and v and
then we can apply the results to other real affected vertices. Hence, Lemma 6
and Lemma 7 both form the basis of Algorithm 2.

Theorem 1 Algorithm 4 correctly updates the original well-ordering 2-hop
distance labeling.

Proof: Firstly, we apply Algorithm 1 to identify the possible and real affected
vertices rooted at u and v, respectively. According to our analysis of Lemma
5, Algorithm 1 correctly identifies all possible and real affected vertices. Sec-
ondly, we apply Algorithm 2 to identify invalid labels IL(u) in RA(u) and
invalid labels IL(v) in RA(v), as well as missing labels ML(u) for RA(u) and
ML(v) for RA(v). According to Lemma 6 and Lemma 7, Algorithm 2 correctly
identifies IL(u), IL(v), ML(u) and ML(v). Thirdly, we remove invalid label
entries based on the results of RA(u), RA(v), IL(u) and IL(v). According to
Lemma 4 and Lemma 5, all invalid label entries are removed correctly from L′.
Finally, PLL BFS algorithm [2] helps to perform PLL BFS from each vertex
in IL(u), IL(v), ML(u) and ML(v) by ascending order of their vertex orders
and to relabel all the real affected vertices. Its correctness has been already
proved in [2]. After these steps, all invalid labels and missing labels have been
recovered, which results in an updated index for the new graph. Therefore, the
theorem is proved. ut

Theorem 2 Algorithm 5 correctly updates the original well-ordering 2-hop
distance labeling.

Proof: Suppose s, t are both in C ′(u). Then any shortest path between s and
t must not contain edge (u, v) which is the bridge between C ′(u) and C ′(v).
In other words, the deletion of (u, v) will not affect shortest paths between s
and t. So we have dG′(s, t) = dG(s, t) = L(s, t, L).

We also need to prove that for the same pair of vertices s, t, when we
calculate dist(s, t, L′), if we have (r, δrs) ∈ L′(s), (r, δrt) ∈ L′(t) and δrs+δrt =
dist(s, t, L′), we must have r ∈ C ′(u). In such case, r must be an internal vertex
of some shortest path between s and t [1]. So we have r ∈ C ′(u). Hence, only
label entries with vertices in the same connected component are needed to
calculate dist(s, t, L′).

16 Yongrui Qin et al.

Similar conclusions can be obtained if s, t ∈ C ′(v). Algorithm 5 only re-
moves label entries containing vertices in another connected component which
are all outdated label entries. Hence, the theorem has been proved. ut

4.3 Remarks on Update Algorithms

Identifying Different Cases. We need to identify different cases before we can
apply our algorithms. This could be achieved by performing a traversal of the
whole graph G at the beginning and record all connected components. Then
we incrementally maintain all the connected components as the graph changes.

Initial Index Construction. Pruned Landmark Labeling (PLL) technique pre-
sented in [2] is the state-of-the-art indexing technique for large static graphs.
Indexes constructed by PLL [2] already have well-ordering property defined in
Section 3. Therefore we use indexes constructed by PLL as the initial indexes
in our experiments.

Index Quality. Our update algorithms preserve the index size very well. As
to be shown in Section 5, the index size decreases gradually after deletions of
edges. This further confirms the scalability of our method.

Complexity. Our algorithms can be directly applied on indexes constructed by
PLL. Let w be the tree width [2] of G, n be the number of vertices and m
be the number of edges in G. Also let (u, v) be the updated edge. According
to analysis of PLL in [2], the number of label entries per vertex is O(w log n).
If let p′ = (|IL(u) ∪ IL(v) ∪ML(u) ∪ML(v)|)/n the time complexity of our
decremental update algorithm is: (1) O(n+m+p′wm log n+p′w2n log2 n) for
Algorithm 4, which is almost proportional to the complexity of PLL [2]; (2)
O(p′wn log n) for Algorithm 5 as it removes invalid label entries only.

5 Experiments

We evaluated the performance of our decremental maintenance approach and
compared with the state-of-the-art in memory indexing method Pruned Land-
mark Labelling (PLL) [2]. All experiments were performed under Linux (Ubuntu
16.04) on a server with Intel Xeon 8-Core E5-2690 CPU at 2.90 GHz, 64 GB
main memory and 5 TB disk. All methods were implemented in C++ (the code
of PLL was obtained from the first author’s code repository on GitHub4), using
the same GCC compiler (version 5.4.0) with the optimizer option O3.

5.1 Datasets and Performance Baseline

Table 2 lists the eleven real-world datasets used in our experiments, consisting
of three computer networks, three web graphs, and five social networks. It

4 https://github.com/iwiwi/pruned-landmark-labeling

Efficient Computation of Distance Labeling for Decremental Updates 17

should be noted that |V | refers to the number of vertices and |E| refers to the
number of edges. More details on the first nine datasets can be found at the
Stanford Network Analysis Project website5 and more details on the last two
datasets can be found at KONECT6. Similar to [3,2], we treat all graphs as
undirected, unweighted graphs.

In addition, in Table 2, IT (or IT-bp, if bit-parallel is applied) denotes the
indexing time or index construction time (in seconds) and LN (or LN-bp, if
bit-parallel is adopted and only normal label entries are considered to calculate
LN-bp, resulting in smaller numbers of LN-bp) denotes the average number
of label entries of each vertex. In our experiments, we used IT and IT-bp in
Table 2 as the baselines. We obtained all these results by using the Pruned
Landmark Labeling (PLL) technique presented in [2], with or without bit-
parallel BFSs. The number of times we conducted bit-parallel BFSs was set
to 16 (the same setting was used in [3]). As mentioned, we applied our update
algorithms directly on the indexes constructed by PLL in our experiments.

Table 2 Real-world Datasets

Dataset Type |V| |E| IT (s) IT-bp (s) LN LN-bp

Gnutella Computer 63 K 148 K 60.3 51.0 780.9 643.3
Epinions Social 76 K 509 K 5.2 1.4 124.0 32.6
Slashdot Social 82 K 948 K 15.4 4.7 216.0 68.3
Gowalla Computer 197 K 950 K 14.5 9.5 100.2 57.3
NotreDame Web 326 K 1.5 M 7.1 4.7 59.6 33.5
Youtube Social 1.1 M 3 M 148.4 96.9 163.2 100.0
WikiTalk Social 2.4 M 5 M 180.0 62.0 118.2 34.0
BerkStan Web 685 K 7.5 M 19.7 19.1 58.0 41.1
Skitter Computer 1.7 M 11.1 M 1,302.3 562.3 456.4 273.6
Flickr-links Social 1.7 M 15.6 M 1,137.8 712.1 492.8 370.0
Hudong-pages Web 2.5 M 18.9 M 7,066.0 5,813.0 960.2 829.2

5.2 Maintenance Performance

We have conducted extensive experiments to validate our proposed approach.
We particularly focus on presenting the performance of our decremental update
algorithm. In the experiments, we performed 1,000 deletions randomly on each
real-world dataset and recorded the total update time (including IDENTIFY
time and UPDATE time), the number of affected vertices, invalid label entries,
and label number changes for each deletion.

5 http://snap.stanford.edu/
6 http://konect.uni-koblenz.de/networks/

18 Yongrui Qin et al.

Table 3 Decremental Maintenance Times

Dataset AUT MUT SU AUT-bp MUT-bp SU-bp

Gnutella 2.46 s 10.55 s 24.51 1.51 s 10.16 s 33.77
Epinions 0.11 s 1.98 s 47.27 0.08 s 0.85 s 17.50
Slashdot 0.26 s 3.22 s 59.23 0.12 s 1.57 s 39.17
Gowalla 0.49 s 7.43 s 29.59 0.46 s 7.07 s 20.65

NotreDame 0.55 s 4.07 s 12.91 0.46 s 3.11 s 10.22
Youtube 5.48 s 88.41 s 27.08 5.33 s 83.45 s 18.18
WikiTalk 10.90 s 103.52 s 16.51 6.74 s 49.32 s 9.20
BerkStan 1.47 s 11.2 s 13.40 1.46 s 10.78 s 13.08
Skitter 50.82 s 697.81 s 25.62 50.10 s 592.77 s 11.22

Flickr-links 12.48 s 339.03 s 91.17 9.60 s 292.95 s 74.18
Hudong-page 135.45 s 1,616.81 s 52.17 99.18 s 1549.33 s 58.61

5.2.1 Maintenance Times

Table 3 shows the detailed performance of our decremental update method. In
the table, AUT (or AUT-bp, with bit-parallel) represents the average update time
for each update. MUT (or MUT-bp, with bit-parallel) represents the maximum
update time of all updates. Finally, SU (or SU-bp, with bit-parallel) represents
the speedup ratio between baseline IT (indexing time) in Table 2 and AUT in
the current table.

From the table, we can observe that for small graphs, without applying the
bit-parallel technique, the average update time (AUT) is within a few seconds.
For instance, the majority for small graphs is actually within one second, e.g.,
0.55 seconds for NotreDame) while for large graphs, the average update time
keeps low at a few seconds (e.g., 5.48 seconds for Youtube. Regarding the
maximum update times, most of them are far less than the construction time
of the whole index. Nevertheless, when compared with the baseline (i.e., IT or
IT-bp in Table 2), regardless of small graphs or large graphs, our approach can
speed up the maintenance process by an order of magnitude. This confirms
the efficiency and effectiveness of our approach. Meanwhile, when bit-parallel
is applied, the average update times (AUT-bp) are even smaller, though the
average speedup ratio is not as large as the instances without bit-parallel,
which could be due to the faster indexing processes with bit-parallel and the
fact that less room is available for speeding up the maintenance processes.

It should be noted that we consider such comparisons are reasonable for
two reasons: (1) to the best of our knowledge, our approach is the first work
that can handle decremental updates in large graphs using distance labeling
and it is impossible to compare our approach with other approaches; and
(2) decremental update has been considered a challenging problem [3], which
indicates the maintenance process is comparable to the reconstruction process
of the whole index.

Figure 4(a) and Figure 4(b) further show the breakdown times spent on
the IDENTIFY and UPDATE processes of each deletion, without applying bit-

Efficient Computation of Distance Labeling for Decremental Updates 19

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Epinions

Slashdot

Gowalla

NotreDame

BerkStan

Breakdown times (seconds)

IDENTIFY

UPDATE

(a)

0 20 40 60 80 100 120 140

Youtube

WikiTalk

Skitter

Flickr-links

Hudong-page

Breakdown times (seconds)

IDENTIFY

UPDATE

(b)

Fig. 4 Breakdown of maintenance times without bit-parallel

parallel, while Figure 5(a) and Figure 5(b) show breakdown times for cases
with bit-parallel. From these figures, we can observe that IDENTIFY time and
UPDATE times are comparable with each other, which indicates that we have
no obvious bottleneck of the whole update process. The main reason for this
is that the more we need to IDENTIFY, the higher possibility that we need
to relabel or UPDATE more vertices.

20 Yongrui Qin et al.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Epinions

Slashdot

Gowalla

NotreDame

BerkStan

Breakdown times (seconds)

IDENTIFY-bp

UPDATE-bp

(a)

0 20 40 60 80 100

Youtube

WikiTalk

Skitter

Flickr-links

Hudong-page

Breakdown times (seconds)

IDENTIFY-bp

UPDATE-bp

(b)

Fig. 5 Breakdown of maintenance times (with bit-parallel)

5.2.2 Affected Vertices

Figure 6 presents the percentage of affected vertices by the updates, showing
the impact of decremental changes in a graph. It should be noted that the re-
sults are the same for cases with or without applying the bit-parallel technique.
In the figure, PAV denotes possible affected vertices (i.e., PA(u)∪PA(v)) and
RAV denotes real affected vertices (i.e., RA(u) ∪RA(v)), as defined in Section

Efficient Computation of Distance Labeling for Decremental Updates 21

Gnu Epi Sla Gow Not You Wik Ber Ski Fli Hud

0

20

40

60

80

6
0
.4

2

4
1
.8 4
6
.9

9

4
7
.8

9

3
1
.4

7

5
5
.9

9

5
7
.1

5

3
3
.7

2

4
9
.7

2

3
3
.0

4

4
9
.6

1

1
9
.2

5

9
.0

2

4
.8

4

0
.7

7

1
3
.3

9 2
5
.5

9 3
6
.4

7

0
.7

7

4 5
.3

6

1
.3

6

%

PAV RAV

Fig. 6 Percentage of PAV and RAV

4. In the figure, we depict the average proportions of PAV and RAV out of all
vertices of the original graphs. It is worthing mentioning that we use the first
three letters in the names of each dataset (e.g., Gnu for Gnutella) for better
illustration in the figure.

From the figure, we can see that normally around half of the vertices in the
original graphs are possibly affected by an update. This means that around
half of the vertices contain shortest paths going through the deleted edge.
However, the proportion of RAV (real affected vertices) is much smaller than
that of PAV, which means most of the vertices in PAV have other paths that
have the same length of the invalidated shortest paths in an update.

5.2.3 Label Changes

Table 4 shows label changes caused by a decremental update. In the table,
|ILE| (or |ILE|-bp, with bit-parallel) represents the average of the total num-
ber of invalid or outdated label entries in an update. LC (or |LC|-bp, with
bit-parallel) represents the average changes of the label entries in an update,
and ∆LN (or ∆LN-bp, with bit-parallel) represents the changes in the aver-
age number of label entries per vertex after each update, reflecting the resulted
index quality.

From the table, we can see that the total number of outdated label en-
tries is quite large. However, the updated index still contains similar but a
bit smaller number of label entries, which indicates that the number of la-
bel entries decreases gradually. This is normal as we do not expect dramatic
changes of the index size after minor changes in the original graph. Further-
more, according to the column ∆LN , we can see that the average number
of label entries per vertex decreases slowly. This indicates that although the
number of outdated label entries is large, the index size remains quite stable.
This shows the scalability of our update approach.

Further Table 5 and Table 6 show the index size comparisons. IS denotes
the original index size, IS1k denotes the index size after 1,000 edge removals

22 Yongrui Qin et al.

Table 4 Label Changes

Dataset |ILE| LC ∆LN |ILE|-bp LC-bp ∆LN-bp

Gnu 3.2× 105 −79.08 −1.3× 10−3 2.5× 104 −57.05 −9.1× 10−4

Epi 6.6× 102 −5.32 −7.0× 10−5 2.2× 101 −4.41 −5.8× 10−5

Sla 4.8× 103 −6.36 −7.8× 10−5 2.9× 101 −5.38 −6.6× 10−5

Gow 1.5× 103 −2.84 −1.4× 10−5 1.4× 102 −5.60 −2.8× 10−5

Not 1.8× 103 −18.70 −5.7× 10−5 4.3× 102 −5.28 −1.6× 10−5

You 1.4× 104 −4.84 −4.4× 10−6 5.4× 102 −18.62 −1.7× 10−5

Wik 9.7× 103 −2.16 −9.0× 10−7 7.2× 101 −11.01 −4.6× 10−6

Ber 9.6× 102 −0.63 −9.2× 10−7 1.1× 103 −5.55 −8.1× 10−6

Ski 3.8× 104 −14.82 −8.7× 10−6 3.1× 103 −7.94 −4.7× 10−6

Fli 5.81× 103 −32.85 −1.9× 10−5 3.5× 102 −24.97 −1.5× 10−5

Hud 6.59× 105 −36.47 −1.5× 10−5 1.9× 105 −26.38 −1.0× 10−5

Table 5 Index Size Comparisons (all in KB)

Dataset IS IS1k ISR IS1k − IS ISR− IS
Gnu 239,177.80 238,791.65 237,127.27 -386.15 -2,050.53
Epi 46,591.08 46,565.12 46,542.64 -25.96 -48.44
Sla 87,396.74 87,365.68 87,288.46 -31.06 -108.28

Gow 97,923.36 97,909.51 97,893.62 -13.84 -29.74
Not 97,683.41 97,592.09 97,588.75 -91.33 -94.66
You 932,975.52 932,951.88 932,694.32 -23.64 -281.20
Wik 1,402,788.59 1,402,778.03 1,402,382.76 -10.56 -405.83
Ber 200,231.37 200,228.30 200,104.49 -3.07 -126.88
Ski 3,795,053.34 3,794,980.96 3,794,043.93 -72.38 -1,009.41
Fli 4,142,419.27 4,142,258.85 4,142,270.35 -160.42 -148.92

Hud 11,521,373.34 11,521,195.27 11,521,013.45 -178.07 -359.89

Table 6 Index Size Comparisons (with bit-parallel, all in KB)

Dataset IS IS1k ISR IS1k − IS ISR− IS
Gnu 213,766.56 213,488.01 212,198.46 -278.55 -1,568.11
Epi 32,898.54 32,877.01 32,858.31 -21.53 -40.23
Sla 49,951.64 49,925.39 49,878.22 -26.25 -73.42

Gow 108,997.92 108,970.57 108,889.20 -27.34 -108.72
Not 142,610.62 142,584.82 142,511.52 -25.80 -99.10
You 883,205.66 883,114.74 883,086.15 -90.92 -119.51
Wik 1,054,379.36 1,054,325.60 1,054,305.60 -53.76 -73.76
Ber 325,494.86 325,467.78 325,452.97 -27.08 -41.88
Ski 2,731,903.81 2,731,865.02 2,731,270.50 -38.79 -633.31
Fli 3,569,262.95 3,569,141.04 3,569,099.72 -121.92 -163.23

Hud 10,603,276.68 10,603,147.90 10,603,053.55 -128.78 -223.13

using our decremental approach, while ISR denotes the index size from re-
construction of the whole index after 1,000 edge removals. In terms of IS,
it is worth mentioning that applying bit-parallel technique does not always
yield smaller indexes. For example, BerkStan will have a much bigger index
if bit-parallel is applied. The main reason for this is that in the bit-parallel

Efficient Computation of Distance Labeling for Decremental Updates 23

labeling process, a number of full BFSs will be performed at the beginning
of the labeling process and no pruning will take place, resulting in bigger in-
dexes in some cases. Now consider the index size differences after 1,000 edge
removals. From columns IS1k − IS and ISR − IS we can see that, though
our approach does not reduce the index size as much as the reconstruction
approach does, the index size (or index quality) is very comparable to the
reconstruction approach.

5.3 Discussions

From our experiments, decremental maintenance normally requires substan-
tial efforts to dynamically update its 2-hop distance labeling compared with
incremental maintenance [3]. The root cause for this is that, decremental up-
dates can make a large amount of labels become invalid, which have to be
relabeled. Further, the 2-hop distance labeling itself does not provide alter-
native shortest paths information but only distance information to any other
vertices. However, during the decremental maintenance, alternative shortest
paths are critical for re-constructing the whole index. Due to lack of alterna-
tive shortest paths information, we have to perform a large number of BFSs
to discover alternative shortest paths in order to maintain the index.

A possible way to further improve performance on decremental mainte-
nance would be to introduce auxiliary information on the labeling or even
redundant label entries in the labeling index. We leave this as one aspect of
our future work.

6 Conclusions

This paper has studied the problem of computing the shortest path distance
in large dynamic graphs. The concept of well-ordering 2-hop distance labeling
and its properties have been defined and analyzed. Its properties that are useful
for index maintenance have been identified. We have particularly focused on
the decremental update operation (i.e., edge deletions), a challenging problem
that remains open, to the best of our knowledge. Several algorithms have been
designed to compute distance labeling in large dynamic graphs, which can
handle decremental updates efficiently. Based on the most recent technique
Pruned Landmark Labeling (PLL) [2] that handles only static graphs, we
have implemented an extended version using the techniques developed in this
paper. The extended PLL is able to support index updates in large dynamic
graphs efficiently for decremental maintenance. Extensive experiments have
also been performed on eleven real-world graphs to confirm its effectiveness
and efficiency. Specifically, the index update process can be accelerated by up
to an order of magnitude faster compared with the original PLL algorithm.
The resulted indexes preserve the index size well, which further demonstrates
the index quality and scalability of our techniques.

24 Yongrui Qin et al.

Our future work will further investigate several aspects of maintaining dis-
tance labeling indexes for large dynamic graphs. The first one centers on how
to further speed up the decremental maintenance. We will investigate possi-
ble ways to maintain auxiliary information and redundant label entries that
could be useful to reduce the relabeling efforts when an update occurs. We
also plan to extend our work to efficiently update distance labeling in mem-
ory and computing resource constrained environments. This is an important
direction because 2-hop distance labeling could be possibly first precomputed
by a super computer and then used on resource constrained devices such as
GPS units, smart phones and so on.

References

1. Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.F.: Hierarchical Hub Labelings
for Shortest Paths. In: Proc. of the 20th Annual European Symposium on Algorithms
(ESA 2012), pp. 24–35. Ljubljana, Slovenia (2012)

2. Akiba, T., Iwata, Y., Yoshida, Y.: Fast Exact Shortest-Path Distance Queries on Large
Networks by Pruned Landmark Labeling. In: Proc. of the ACM SIGMOD International
Conference on Management of Data (SIGMOD 2013), pp. 349–360. New York, NY,
USA (2013)

3. Akiba, T., Iwata, Y., Yoshida, Y.: Dynamic and historical shortest-path distance queries
on large evolving networks by pruned landmark labeling. In: Proc. of the 23rd Inter-
national World Wide Web Conference (WWW 2014), pp. 237–248. Seoul, Republic of
Korea (2014)

4. Akiba, T., Sommer, C., Kawarabayashi, K.: Shortest-Path Queries for Complex Net-
works: Exploiting Low Tree-Width Outside the Core. In: Proc. of the 15th International
Conference on Extending Database Technology, (EDBT 2012), pp. 144–155. Berlin, Ger-
many (2012)

5. Bernstein, A.: Maintaining Shortest Paths Under Deletions in Weighted Directed
Graphs: [Extended Abstract]. In: Proc. of the forty-fifth annual ACM symposium on
Theory of computing (STOC 2013), pp. 725–734. Palo Alto, CA, USA (2013)

6. Bramandia, R., Choi, B., Ng, W.K.: Incremental Maintenance of 2-Hop Labeling of
Large Graphs. IEEE Trans. Knowl. Data Eng. 22(5), 682–698 (2010)

7. Chang, L., Yu, J.X., Qin, L., Cheng, H., Qiao, M.: The exact distance to destination in
undirected world. VLDB J. 21(6), 869–888 (2012)

8. Cheng, J., Ke, Y., Chu, S., Cheng, C.: Efficient Processing of Distance Queries in Large
Graphs: A Vertex Cover Approach. In: Proc. of the ACM SIGMOD International
Conference on Management of Data (SIGMOD 2012), pp. 457–468. Scottsdale, AZ,
USA (2012)

9. Cheng, J., Yu, J.X.: On-line exact shortest distance query processing. In: EDBT, pp.
481–492 (2009)

10. Ciortea, A., Boissier, O., Zimmermann, A., Florea, A.M.: Reconsidering the social web
of things: position paper. In: Proc. the 2013 ACM International Joint Conference on
Pervasive and Ubiquitous Computing (UbiComp 2013) (Adjunct Publication), pp. 1535–
1544. Zurich, Switzerland (2013)

11. Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and distance queries via
2-hop labels. In: Proc. of the Thirteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2002), pp. 937–946. San Francisco, CA, USA (2002)

12. Demetrescu, C., Italiano, G.F.: A New Approach to Dynamic All Pairs Shortest Paths.
J. ACM 51(6), 968–992 (2004)

13. Demetrescu, C., Italiano, G.F.: Experimental Analysis of Dynamic All Pairs Shortest
Path Algorithms. ACM Transactions on Algorithms 2(4), 578–601 (2006)

14. Espinosa, J.: Facebook’s Global Growth in Q4: 1.06B MAU, Mobile Surpasses Web.
http://www.insidefacebook.com/2013/01/30/

Efficient Computation of Distance Labeling for Decremental Updates 25

15. Farsani, H.K., Nematbakhsh, M.A., Lausen, G.: SRank: Shortest paths as distance
between nodes of a graph with application to RDF clustering. J. Information Science
39(2), 198–210 (2013)

16. Fu, A.W.C., Wu, H., Cheng, J., Wong, R.C.W.: IS-LABEL: an Independent-Set based
Labeling Scheme for Point-to-Point Distance Querying. Proc.of the VLDB Endowment
6(6), 457–468 (2013)

17. Jin, R., Ruan, N., Xiang, Y., Lee, V.E.: A highway-centric labeling approach for answer-
ing distance queries on large sparse graphs. In: Proc. of the ACM SIGMOD International
Conference on Management of Data (SIGMOD 2012), pp. 445–456. Scottsdale, AZ, USA
(2012)

18. K., P., Kumar, S.P., Damien, D.: Ranked answer graph construction for keyword queries
on RDF graphs without distance neighbourhood restriction. In: Proc. of the 20th In-
ternational Conference on World Wide Web (WWW 2011, Companion Volume), pp.
361–366. Hyderabad, India (2011)

19. Qin, Y., Sheng, Q.Z., Zhang, W.E.: SIEF: Efficiently Answering Distance Queries for
Failure Prone Graphs. In: Proc. of the 18th International Conference on Extending
Database Technology (EDBT 2015), pp. 145–156. Brussels, Belgium (2015)

20. Schenkel, R., Theobald, A., Weikum, G.: Efficient Creation and Incremental Mainte-
nance of the HOPI Index for Complex XML Document Collections. In: Proc. of the
21st International Conference on Data Engineering (ICDE 2005), pp. 360–371. Tokyo,
Japan (2005)

21. Vassilvitskii, S., Brill, E.: Using Web-Graph Distance for Relevance Feedback in Web
Search. In: Proc. of the 29th Annual International Conference on Research and Devel-
opment in Information Retrieval (SIGIR 2006), pp. 147–153. Seattle, Washington, USA
(2006)

22. Vieira, M.V., Fonseca, B.M., Damazio, R., Golgher, P.B., de Castro Reis, D., Ribeiro-
Neto, B.A.: Efficient search ranking in social networks. In: Proc. of the Sixteenth ACM
Conference on Information and Knowledge Management (CIKM 2007), pp. 563–572.
Lisbon, Portugal (2007)

23. Wehmuth, K., Ziviani, A.: DACCER: Distributed Assessment of the Closeness CEntral-
ity Ranking in complex networks. Computer Networks 57(13), 2536–2548 (2013)

24. Wei, F.: TEDI: efficient shortest path query answering on graphs. In: Proc. of the
ACM SIGMOD International Conference on Management of Data (SIGMOD 2010),
pp. 99–110. Indianapolis, Indiana, USA (2010)

25. Yao, L., Sheng, Q.Z.: Exploiting Latent Relevance for Relational Learning of Ubiqui-
tous Things. In: Proc. of the 21st ACM International Conference on Information and
Knowledge Management (CIKM 2012). Maui, Hawaii, USA (2012)

26. Zhu, A.D., Xiao, X., Wang, S., Lin, W.: Efficient Single-Source Shortest Path and Dis-
tance Queries on Large Graphs. In: Proc. of the 19th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (KDD 2013), pp. 998–1006. Chicago,
IL, USA (2013)

