295 research outputs found

    Direct Measurement of Piezoelectric Response around Ferroelectric Domain Walls in Crystals with Engineered Domain Configuration

    Full text link
    We report the first investigation of the piezoelectric response on a nanoscale in the poled ferroelectric crystals with engineered configuration of domains. Piezoresponse force microscopy of tetragonal 0.63PMN-0.37PT relaxor-based ferroelectric crystals reviled that the d33 piezoelectric coefficient is significantly reduced within the distance of about 1 um from the uncharged engineered domain wall. This finding is essential for understanding the mechanisms of the giant piezoresponse in relaxor-based crystals and for designing new piezoelectric materials

    Development of Ferroelectric Order in Relaxor (1-x)Pb(Mg1/3Nb2/3)O3 - xPbTiO3

    Full text link
    The microstructure and phase transition in relaxor ferroelectric Pb(Mg1/3Nb2/3)O3 (PMN) and its solid solution with PbTiO3 (PT), PMN-xPT, remain to be one of the most puzzling issues of solid state science. In the present work we have investigated the evolution of the phase symmetry in PMN-xPT ceramics as a function of temperature (20 K < T < 500 K) and composition (0 <= x <= 0.15) by means of high-resolution synchrotron x-ray diffraction. Structural analysis based on the experimental data reveals that the substitution of Ti^4+ for the complex B-site (Mg1/3Nb2/3)^4+ ions results in the development of a clean rhombohedral phase at a PT-concentration as low as 5%. The results provide some new insight into the development of the ferroelectric order in PMN-PT, which has been discussed in light of the kinetics of polar nanoregions and the physical models of the relaxor ferroelectrics to illustrate the structural evolution from a relaxor to a ferroelectric state.Comment: Revised version with updated references; 9 pages, 4 figures embedde

    Spin-glass state and long-range magnetic order in Pb(Fe1/2Nb1/2)O3

    Full text link
    We have investigated the magnetic ground-state of the multiferroic relaxor ferroelectric \pfn with μ\muSR spectroscopy and neutron scattering. We find that a transition to a partially disordered phase occurs below T=20 K that coexists with long-range antiferromagnetic ordering. The disordered phase resembles a spin-glass. No clustering of magnetic ions could be evidenced by μ\muSR so that the coexistence appears homogeneous in the sample

    Monte Carlo Study of Relaxor Systems: A Minimum Model for Pb(In1/2_{1/2}Nb1/2_{1/2})O3_3}

    Full text link
    We examine a simple model for Pb(In1/2_{1/2}Nb1/2_{1/2})O3_3 (PIN), which includes both long-range dipole-dipole interaction and random local anisotropy. A improved algorithm optimized for long-range interaction has been applied for efficient large-scale Monte Carlo simulation. We demonstrate that the phase diagram of PIN is qualitatively reproduced by this minimum model. Some properties characteristic of relaxors such as nano-scale domain formation, slow dynamics and dispersive dielectric responses are also examined.Comment: 5 pages, 4 figure

    Direct observation of the formation of polar nanoregions in Pb(Mg1/3_{1/3}Nb2/3_{2/3})O3_3 using neutron pair distribution function analysis

    Get PDF
    Using neutron pair distribution function (PDF) analysis over the temperature range from 1000 K to 15 K, we demonstrate the existence of local polarization and the formation of medium-range, polar nanoregions (PNRs) with local rhombohedral order in a prototypical relaxor ferroelectric Pb(Mg1/3_{1/3}Nb2/3_{2/3})O3_3. We estimate the volume fraction of the PNRs as a function of temperature and show that this fraction steadily increases from 0 % to a maximum of \sim 30% as the temperature decreases from 650 K to 15 K. Below T\sim200 K the PNRs start to overlap as their volume fraction reaches the percolation threshold. We propose that percolating PNRs and their concomitant overlap play a significant role in the relaxor behavior of Pb(Mg1/3_{1/3}Nb2/3_{2/3})O3_3.Comment: 4 pages, 3 figure

    Estimate risk difference and number needed to treat in survival analysis

    Get PDF
    The hazard ratio (HR) is a measure of instantaneous relative risk of an increase in one unit of the covariate of interest, which is widely reported in clinical researches involving time-to-event data. However, the measure fails to capture absolute risk reduction. Other measures such as number needed to treat (NNT) and risk difference (RD) provide another perspective on the effectiveness of an intervention, and can facilitate clinical decision making. The article aims to provide a step-by-step tutorial on how to compute RD and NNT in survival analysis with R. For simplicity, only one measure (RD or NNT) needs to be illustrated, because the other measure is a reverse of the illustrated one (NNT=1/RD). An artificial dataset is composed by using the survsim package. RD and NNT are estimated with Austin method after fitting a Cox-proportional hazard regression model. The confidence intervals can be estimated using bootstrap method. Alternatively, if the standard errors (SEs) of the survival probabilities of the treated and control group are given, confidence intervals can be estimated using algebraic calculations. The pseudo-value model provides another method to estimate RD and NNT. Details of R code and its output are shown and explained in the main text

    Effect of high pressure on multiferroic BiFeO3

    Full text link
    We report experimental evidence for pressure instabilities in the model multiferroic BiFeO3 and namely reveal two structural phase transitions around 3 GPa and 10 GPa by using diffraction and far-infrared spectroscopy at a synchrotron source. The intermediate phase from 3 to 9 GPa crystallizes in a monoclinic space group, with octahedra tilts and small cation displacements. When the pressure is further increased the cation displacements (and thus the polar character) of BiFeO3 is suppressed above 10 GPa. The above 10 GPa observed non-polar orthorhombic Pnma structure is in agreement with recent theoretical ab-initio prediction, while the intermediate monoclinic phase was not predicted theoretically.Comment: new version, accepted for publication in Phys. Rev.

    Barkhausen Noise in a Relaxor Ferroelectric

    Full text link
    Barkhausen noise, including both periodic and aperiodic components, is found in and near the relaxor regime of a familiar relaxor ferroelectric, PbMg1/3_{1/3}Nb2/3_{2/3}O3_3, driven by a periodic electric field. The temperature dependences of both the amplitude and spectral form show that the size of the coherent dipole moment changes shrink as the relaxor regime is entered, contrary to expectations based on some simple models.Comment: 4 pages RevTeX4, 5 figures; submitted to Phys Rev Let

    Experimental evidence for an intermediate phase in the multiferroic YMnO3

    Get PDF
    We have studied YMnO3_{3} by high-temperature synchrotron X-ray powder diffraction, and have carried out differential thermal analysis and dilatometry on a single crystal sample. These experiments show two phase transitions at about 1100K and 1350K, respectively. This demonstrates the existence of an intermediate phase between the room temperature ferroelectric and the high temperature centrosymmetric phase. This study identifies for the first time the different high-temperature phase transitions in YMnO3_{3}.Comment: 10 pages 5 figures. New version, Additional data, Journal of Physics: Condensed Matter, in Pres

    Dielectric nonlinearity of relaxor ferroelectric ceramics at low ac drives

    Full text link
    Dielectric nonlinear response of (PbMg1/3_{1/3}Nb2/3_{2/3}O3_3)0.9_{0.9}(PbTiO3_3)0.1_{0.1} (0.9PMN-0.1PT) relaxor ceramics was investigated under different ac drive voltages. It was observed that: (i) the dielectric permittivity is independent on ac field amplitude at high temperatures; (ii) with increasing ac drive, the permittivity maximum increases, and the temperature of the maximum shifts to lower temperature; (iii) the nonlinear effect is weakened when the measurement frequency increases. The influences of increasing ac drive were found to be similar to that of decreasing frequency. It is believed that the dielectric nonlinearities of relaxors at low drives can be explained by the phase transition theory of ergodic space shrinking in succession. A Monte Carlo simulation was performed on the flips of micro polarizations at low ac drives to verify the theory.Comment: Submitted to J. Phys.: Cond. Matte
    corecore