20 research outputs found

    DEVELOPMENT OF A FRAMEWORK FOR IMPLEMENTING 3D SPATIAL DATA INFRASTRUCTURE IN OMAN – ISSUES AND CHALLENGES

    Get PDF
    The paper reviews that there are several issues and challenges in order to implement full 2D and 3D Spatial Data Infrastructure (SDI) in Oman. The state of current 2D SDI and 3D geospatial data has been investigated. Currently, Oman has made noticeable progress in 2D SDI but not yet in 3D domain. To date, there are no serious efforts and initiatives by the authority to materialize the 3D SDI. This paper ends by describing a framework for implementing the 3D SDI. We expect, these issues and challenges of 3D SDI in Oman can prompt better services for several potential users

    From DPSIR the DAPSI(W)R(M) Emerges… a Butterfly – ‘protecting the natural stuff and delivering the human stuff’

    Get PDF
    The complexity of interactions and feedbacks between human activities and ecosystems can make the analysis of such social-ecological systems intractable. In order to provide a common means to understand and analyse the links between social and ecological process within these systems, a range of analytical frameworks have been developed and adopted. Following decades of practical experience in implementation, the Driver Pressure State Impact Response (DPSIR) conceptual framework has been adapted and re-developed to become the D(A)PSI(W)R(M). This paper describes in detail the D(A)PSI(W)R(M) and its development from the original DPSIR conceptual frame. Despite its diverse application and demonstrated utility, a number of inherent shortcomings are identified. In particular the DPSIR model family tend to be best suited to individual environmental pressures and human activities and their resulting environmental problems, having a limited focus on the supply and demand of benefits from nature. We present a derived framework, the “Butterfly”, a more holistic approach designed to expand the concept. The “Butterfly” model, moves away from the centralised accounting framework approach while more-fully incorporating the complexity of social and ecological systems, and the supply and demand of ecosystem services, which are central to human-environment interactions

    Effect of surgical experience and spine subspecialty on the reliability of the {AO} Spine Upper Cervical Injury Classification System

    Get PDF
    OBJECTIVE The objective of this paper was to determine the interobserver reliability and intraobserver reproducibility of the AO Spine Upper Cervical Injury Classification System based on surgeon experience (< 5 years, 5–10 years, 10–20 years, and > 20 years) and surgical subspecialty (orthopedic spine surgery, neurosurgery, and "other" surgery). METHODS A total of 11,601 assessments of upper cervical spine injuries were evaluated based on the AO Spine Upper Cervical Injury Classification System. Reliability and reproducibility scores were obtained twice, with a 3-week time interval. Descriptive statistics were utilized to examine the percentage of accurately classified injuries, and Pearson’s chi-square or Fisher’s exact test was used to screen for potentially relevant differences between study participants. Kappa coefficients (κ) determined the interobserver reliability and intraobserver reproducibility. RESULTS The intraobserver reproducibility was substantial for surgeon experience level (< 5 years: 0.74 vs 5–10 years: 0.69 vs 10–20 years: 0.69 vs > 20 years: 0.70) and surgical subspecialty (orthopedic spine: 0.71 vs neurosurgery: 0.69 vs other: 0.68). Furthermore, the interobserver reliability was substantial for all surgical experience groups on assessment 1 (< 5 years: 0.67 vs 5–10 years: 0.62 vs 10–20 years: 0.61 vs > 20 years: 0.62), and only surgeons with > 20 years of experience did not have substantial reliability on assessment 2 (< 5 years: 0.62 vs 5–10 years: 0.61 vs 10–20 years: 0.61 vs > 20 years: 0.59). Orthopedic spine surgeons and neurosurgeons had substantial intraobserver reproducibility on both assessment 1 (0.64 vs 0.63) and assessment 2 (0.62 vs 0.63), while other surgeons had moderate reliability on assessment 1 (0.43) and fair reliability on assessment 2 (0.36). CONCLUSIONS The international reliability and reproducibility scores for the AO Spine Upper Cervical Injury Classification System demonstrated substantial intraobserver reproducibility and interobserver reliability regardless of surgical experience and spine subspecialty. These results support the global application of this classification system

    Fog and Rain Water Collection from Trees in the Dhofar Region in the Sultanate of Oman

    Get PDF
    This work had two purposes. The first was to measure and investigate the amount of fog and rain water collected by a sample of trees during the summer monsoon season in the mountains of the Dhofar region in the south of Oman. The second purpose was to assess the potential of trees with different leaf shapes, sizes and cross sectional canopy areas to collect fog and rain water in the area. In order to meet these purposes three different tree species, were selected for experimental investigation and field measurements. They included fig, lemon, and tamarind trees. The experiments were designed and implemented in the monsoon season of 2006, between the 13th of July and the 3rd of September. The daily measurements of water collection showed that the three species of tree have different water collection capacities. It was found that the fig tree collected the least water. The fog water collection of the fig tree over a period of 47 days between the 13th of July and the 3rd of September was 140.5 L/m2, or an average of 2.7 L/m2/d. The fog water collection of the lemon tree was 243.0 L/m2, or an average of 4.4 L/m2/d. In terms of potential collection of the tamarind tree, the results showed that it collected a fog water of 218.9 L/m2, or an average of 4.3 L/m2/d over the same period. The study contributes to the knowledge of how different tree species collect fog and rain water, and concludes with a set of recommendations

    Numerical simulation of natural convection heat transfer in a trapezoidal enclosure filled with nanoparticles

    No full text
    In this paper, we have investigated unsteady natural convection flow and heat transfer inside a trapezoidal enclosure filled with nine different types of nanofluids having various shapes of the nanoparticle following Tiwari and Das mathematical model. The left and right walls of the enclosure are kept at different temperatures, while the top and bottom walls of the cavity are thermally insulated. The Galerkin weighted residual based finite element method has been employed to solve the governing partial differential equations after converting them into a nondimensional form. The simulation is carried out through the pde solver COMSOL Multiphysics with Matlab interface. Comparison with the previously published result is made for a special case and an excellent agreement is found. The effects of various model parameters such as the Rayleigh number, the aspect ratio, the volume fraction and the shape factor of the nanoparticles on streamlines and isotherms have been displayed graphically and discussed. The heat transfer augmentation for various combinations of pertinent parameters has also been presented in light of the average Nusselt number on the left heated wall
    corecore