2,226 research outputs found

    The Two Phases of Galaxy Formation

    Full text link
    Cosmological simulations of galaxy formation appear to show a two-phase character with a rapid early phase at z>2 during which in-situ stars are formed within the galaxy from infalling cold gas followed by an extended phase since z<3 during which ex-situ stars are primarily accreted. In the latter phase massive systems grow considerably in mass and radius by accretion of smaller satellite stellar systems formed at quite early times (z>3) outside of the virial radius of the forming central galaxy. These tentative conclusions are obtained from high resolution re-simulations of 39 individual galaxies in a full cosmological context with present-day virial halo masses ranging from 7e11 M_sun h^-1 < M_vir < 2.7e13 M_sun h^-1 and central galaxy masses between 4.5e10 M_sun h^-1 < M_* < 3.6e11 M_sun h^-1. The simulations include the effects of a uniform UV background, radiative cooling, star formation and energetic feedback from SNII. The importance of stellar accretion increases with galaxy mass and towards lower redshift. In our simulations lower mass galaxies (M<9e10Msunh1)accreteabout60percentoftheirpresentdaystellarmass.Highmassgalaxy(M_* < 9e10 M_sun h^-1) accrete about 60 per cent of their present-day stellar mass. High mass galaxy (M_* > 1.7e11 M_sun h^-1) assembly is dominated by accretion and merging with about 80 per cent of the stars added by the present-day. In general the simulated galaxies approximately double their mass since z=1. For massive systems this mass growth is not accompanied by significant star formation. The majority of the in-situ created stars is formed at z>2, primarily out of cold gas flows. We recover the observational result of archaeological downsizing, where the most massive galaxies harbor the oldest stars. We find that this is not in contradiction with hierarchical structure formation. Most stars in the massive galaxies are formed early on in smaller structures, the galaxies themselves are assembled late.Comment: 13 pages, 13 figures, accepted for publication in Ap

    Latent Space Model for Multi-Modal Social Data

    Full text link
    With the emergence of social networking services, researchers enjoy the increasing availability of large-scale heterogenous datasets capturing online user interactions and behaviors. Traditional analysis of techno-social systems data has focused mainly on describing either the dynamics of social interactions, or the attributes and behaviors of the users. However, overwhelming empirical evidence suggests that the two dimensions affect one another, and therefore they should be jointly modeled and analyzed in a multi-modal framework. The benefits of such an approach include the ability to build better predictive models, leveraging social network information as well as user behavioral signals. To this purpose, here we propose the Constrained Latent Space Model (CLSM), a generalized framework that combines Mixed Membership Stochastic Blockmodels (MMSB) and Latent Dirichlet Allocation (LDA) incorporating a constraint that forces the latent space to concurrently describe the multiple data modalities. We derive an efficient inference algorithm based on Variational Expectation Maximization that has a computational cost linear in the size of the network, thus making it feasible to analyze massive social datasets. We validate the proposed framework on two problems: prediction of social interactions from user attributes and behaviors, and behavior prediction exploiting network information. We perform experiments with a variety of multi-modal social systems, spanning location-based social networks (Gowalla), social media services (Instagram, Orkut), e-commerce and review sites (Amazon, Ciao), and finally citation networks (Cora). The results indicate significant improvement in prediction accuracy over state of the art methods, and demonstrate the flexibility of the proposed approach for addressing a variety of different learning problems commonly occurring with multi-modal social data.Comment: 12 pages, 7 figures, 2 table

    Life interrupted and life regained? Coping with stroke at a young age

    Get PDF
    Stroke is a leading cause of disability across the developed world, affecting an increasing number of younger people. In this article, we seek to understand the experience of stroke as a disabling life situation among young people and the strategies that they use to recover and cope. Directed content analysis was conducted from interviews with 17 community-dwelling stroke survivors aged 55 years and younger across the United Kingdom. The sample was drawn from a larger maximum variation sample of stroke survivors. Using the sociological concepts of biographical disruption and biographical repair as a guide, excerpts from the interviews pertaining to aspects of the patients’ life that were interrupted, in addition to how they coped with the changes, were selected and analysed. All individuals described an ‘‘altered sense of self,’’ a theme that included loss of identity, family disruption, and/or loss of valued activities. Individuals sought to adapt their sense of self by seeking external support, by restoring normality, and/or through positive reflection. Despite the adapted self that emerged, most individuals continued to experience impairments. While young stroke survivors adapt to their illness over time, they continue to experience impairments and disruptions in their personal and work lives.Aholistic model of rehabilitation that helps individuals regain the capacity for everyday activities related to work, family life, and leisure can begin to address the emotional ramifications of diseases such as stroke, restore wellness, and work towards minimizing the burden felt by family caregivers and children

    A Network and Repository for Online Laboratory based on Ontology

    Get PDF
    Our propose is to build a network of virtual laboratories and also use it as a global repository of online laboratory’s and experiences. This set of virtual and online laboratories can be “stored” in an “virtual closet”, and also the system will allow us to build new experiences and online laboratories, and store them is this “virtual closet”. With the drawing of this new standard we pretend define methods for storing and retrieving learning objects for remote laboratories. The objective of this standard is also define methods for linking learning objects to design and implement smart learning environments for remote online laboratories. The objects defined by this standard are, for example, interfaces for devices connected to user computers over computers networks and the devices themselves. They are also learning scenarios or collaboration tools for communications necessary to conduct an activity of practical online laboratory work, they will allow to design and implement mechanisms that make smart learning environment formed by the ad hoc aggregation of learning objects taking always into account the pedagogical context for their use. This will allow to easy design and implement the pedagogically driven remote laboratory environment and experiments as also is learning environments. The experiences and laboratories are build using the parts and separate components that we have in a separate “virtual closet” with parts, components, and already build experiences. To build this complex network we need to find a system that supports effectively this structure. This probably will be a enormous database of v-labs and independent elements, where will be possible sometimes to “recycle” some of the elements. For this structure we propose an Ontology because it allows to “re-use” the same element several times in many experiences, and provide a very detailed description of each kind of element through is classes and sub-classes.Com o apoio RAADRI

    Theory of High-Tc Superconductivity: Accurate Predictions of Tc

    Full text link
    The superconducting transition temperatures of high-Tc compounds based on copper, iron, ruthenium and certain organic molecules are discovered to be dependent on bond lengths, ionic valences, and Coulomb coupling between electronic bands in adjacent, spatially separated layers [1]. Optimal transition temperature, denoted as T_c0, is given by the universal expression kBTc0=e2Λ/ζk_BT_c0 = e^2 \Lambda / \ell\zeta; \ell is the spacing between interacting charges within the layers, \zeta is the distance between interacting layers and \Lambda is a universal constant, equal to about twice the reduced electron Compton wavelength (suggesting that Compton scattering plays a role in pairing). Non-optimum compounds in which sample degradation is evident typically exhibit Tc < T_c0. For the 31+ optimum compounds tested, the theoretical and experimental T_c0 agree statistically to within +/- 1.4 K. The elemental high Tc building block comprises two adjacent and spatially separated charge layers; the factor e^2/\zeta arises from Coulomb forces between them. The theoretical charge structure representing a room-temperature superconductor is also presented.Comment: 7 pages 5 references, 6 figures 1 tabl

    Spectroscopic confirmation of z~7 LBGs: probing the earliest galaxies and the epoch of reionization

    Full text link
    We present the final results from our ultra-deep spectroscopic campaign with FORS2 at the ESO/VLT for the confirmation of z~7 "z--band dropout" candidates selected from our VLT/Hawk-I imaging survey over three independent fields. In particular we report on two newly discovered galaxies at redshift ~6.7 in the NTT deep field: both galaxies show a Ly-alpha emission line with rest-frame EWs of the order 15-20 A and luminosities of 2-4 X 10^{42} erg/s. We also present the results of ultra-deep observations of a sample of i-dropout galaxies, from which we set a solid upper limit on the fraction of interlopers. Out of the 20 z-dropouts observed we confirm 5 galaxies at 6.7 < z < 7.1. This is systematically below the expectations drawn on the basis of lower redshift observations: in particular there is a significant lack of objects with intermediate Ly-alpha EWs (between 20 and 55 A). We conclude that the trend for the fraction of Ly-alpha emission in LBGs that is constantly increasing from z~3 to z~6 is most probably reversed from z~6 to z~7. Explaining the observed rapid change in the LAE fraction among the drop-out population with reionization requires a fast evolution of the neutral fraction of hydrogen in the Universe. Assuming that the Universe is completely ionized at z=6 and adopting the semi-analytical models of Dijkstra et al. (2011), we find that our data require a change of the neutral hydrogen fraction of the order Delta chi_{HI} ~ 0.6 in a time Delta z ~ 1, provided that the escape fraction does not increase dramatically over the same redshift interval.Comment: Submitted to Ap

    A Comparison of Polarization Observables in Electron Scattering from the Proton and Deuteron

    Full text link
    Recoil proton polarization observables were measured for both the p(e\vec {\rm e},ep^\prime\vec{\rm p}\,) and d(e\vec {\rm e},ep)^\prime\vec{\rm p}\,)n reactions at two values of Q2^2 using a newly commissioned proton Focal Plane Polarimeter at the M.I.T.-Bates Linear Accelerator Center. The hydrogen and deuterium spin-dependent observables DD_{\ell\ell} and DtD_{{\ell}t}, the induced polarization PnP_n and the form factor ratio GEp/GMpG^p_E/G^p_M were measured under identical kinematics. The deuterium and hydrogen results are in good agreement with each other and with the plane-wave impulse approximation (PWIA).Comment: 9 pages, 1 figure; accepted by Phys. Rev. Let
    corecore