83,256 research outputs found
Pilot modeling, modal analysis, and control of large flexible aircraft
The issues to be addressed are threefold. The first deals with the question of whether dynamic aeroelastic effects can significantly impact piloted flight dynamics. For example, if one were to explore this problem experimentally, what mathematical model would be appropriate to use in the simulation? What modes, for example, should be included in the simulation, or what linear model should be used in the control synthesis? The second question deals with the appropriate design criteria or design objectives. In the case of active control, for example, what would be the design objectives for the control synthesis if aeroelastic effects are a problem? The outline of the topics includes a description of a model analysis methodology aimed at answering the question of the significance of higher order dynamics. Secondly, a pilot vehicle analysis of some experimental data addresses the question of ""What's important in the task?'' The experimental data will be presented briefly, followed by the results of an open-loop modal analysis of the generic vehicle configurations in question. Finally, one of the vehicles will be augmented via active control and the results presented
Time Domain Identification of an Optimal Control Pilot Model with Emphasis on the Objective Function
A method for the identification of the pilot's control compensation using time domain techniques is proposed. From this information we hope to infer a quadratic cost function, supported by the data, that represents a reasonable expression for the pilot's control objective in the task being performed, or an inferred piloting strategy. The objectives for this method are: (1) obtain a better understanding of the fundamental piloting techniques in complex tasks, such as landing approach; (2) the development of a metric measurable in simulations and flight test that correlate with subjective pilot opinion; and (3) to further validate pilot models and pilot vehicle analysis methods
Model estimation and identification of manual controller objectives in complex tracking tasks
A methodology is presented for estimating the parameters in an optimal control structural model of the manual controller from experimental data on complex, multiinput/multioutput tracking tasks. Special attention is devoted to estimating the appropriate objective function for the task, as this is considered key in understanding the objectives and strategy of the manual controller. The technique is applied to data from single input/single output as well as multi input/multi outpuut experiments, and results discussed
Optimal cooperative control synthesis of active displays
A technique is developed that is intended to provide a systematic approach to synthesizing display augmentation for optimal manual control in complex, closed-loop tasks. A cooperative control synthesis technique, previously developed to design pilot-optimal control augmentation for the plant, is extended to incorporate the simultaneous design of performance enhancing displays. The technique utilizes an optimal control model of the man in the loop. It is applied to the design of a quickening control law for a display and a simple K/s(2) plant, and then to an F-15 type aircraft in a multi-channel task. Utilizing the closed loop modeling and analysis procedures, the results from the display design algorithm are evaluated and an analytical validation is performed. Experimental validation is recommended for future efforts
Analysis of flexible aircraft longitudinal dynamics and handling qualities. Volume 2: Data
Two analysis methods are applied to a family of flexible aircraft in order to investigate how and when structural (especially dynamic aeroelastic) effects affect the dynamic characteristics of aircraft. The first type of analysis is an open loop modal analysis technique. This method considers the effect of modal residue magnitudes on determining vehicle handling qualities. The second method is a pilot in the loop analysis procedure that considers several closed loop system characteristics. Both analyses indicated that dynamic aeroelastic effects caused a degradation in vehicle tracking performance, based on the evaluation of some simulation results. Volume 2 consists of the presentation of the state variable models of the flexible aircraft configurations used in the analysis applications mode shape plots for the structural modes, numerical results from the modal analysis frequency response plots from the pilot in the loop analysis and a listing of the modal analysis computer program
Interactive aircraft flight control and aeroelastic stabilization
Several examples are presented in which flutter involving interaction between flight mechanics modes and elastic wind bending occurs for a forward swept wing flight vehicle. These results show the basic mechanism by which the instability occurs and form the basis for attempts to actively control such a vehicle
Final excitation energy of fission fragments
We study how the excitation energy of the fully accelerated fission fragments
is built up. It is stressed that only the intrinsic excitation energy available
before scission can be exchanged between the fission fragments to achieve
thermal equilibrium. This is in contradiction with most models used to
calculate prompt neutron emission where it is assumed that the total excitation
energy of the final fragments is shared between the fragments by the condition
of equal temperatures. We also study the intrinsic excitation-energy partition
according to a level density description with a transition from a
constant-temperature regime to a Fermi-gas regime. Complete or partial
excitation-energy sorting is found at energies well above the transition
energy.Comment: 8 pages, 3 figure
Time Series Modeling of Human Operator Dynamics in Manual Control Tasks
A time-series technique is presented for identifying the dynamic characteristics of the human operator in manual control tasks from relatively short records of experimental data. Control of system excitation signals used in the identification is not required. The approach is a multi-channel identification technique for modeling multi-input/multi-output situations. The method presented includes statistical tests for validity, is designed for digital computation, and yields estimates for the frequency response of the human operator. A comprehensive relative power analysis may also be performed for validated models. This method is applied to several sets of experimental data; the results are discussed and shown to compare favorably with previous research findings. New results are also presented for a multi-input task that was previously modeled to demonstrate the strengths of the method
Fate of the cluster state on the square lattice in a magnetic field
The cluster state represents a highly entangled state which is one central
object for measurement-based quantum computing. Here we study the robustness of
the cluster state on the two-dimensional square lattice at zero temperature in
the presence of external magnetic fields by means of different types of
high-order series expansions and variational techniques using infinite
Projected Entangled Pair States (iPEPS). The phase diagram displays a
first-order phase transition line ending in two critical end points.
Furthermore, it contains a characteristic self-dual line in parameter space
allowing many precise statements. The self-duality is shown to exist on any
lattice topology.Comment: 12 pages, 9 figure
- …
