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SUMMARY

This report presents several examples in which flutter involving

interaction between flight mechanics modes and elastic wing bending occurs

for a forward swept wing flight vehicle. These results show the basic

mechanism by which the instability occurs and form the basis for attempts

to actively control such a vehicle. This work was accomplished between

1 May 1981 &P4 31 October 1981.



INTRODUCTION

It has been known for man, years that the calculated flutter speed

of an aircraft may be modified by the inclusion of the rigid body or

free-free modes of the aircraft. Similarly, the predicted aircraft

stability and control characteristics may be significantly different if

structural flexibility is included in the analysis. Over the years, cer-

tain informal guidelines have been developed to assess the potential

importance of the body - freedor,F modes to flutter analysis.

The earliest report on the subject of body-freedom influence on

flutter appears to be due to Frazer and Duncan (Ref. 1). Their study

showed that "fuselage mobility" had a slightly favorable effect on the

calculated flutter speeds. Groadbent (Ref. 2) discussed thk-, necessity

for the inclusion of the body-freedoms for swept wing flutter calculations.

Gaukroger (Ref. 3, 4) also conducted several significant investigations

into the influence of body-freedom on flutter. His studies are summar-

ized in the AGARD Manual on Aeroelasticity (Ref. 5). His studies revealed

that, when body-freedoms are included in the analysis, two distinct types

of symmetric flutter can occur. The first type of flutter results from

wing bending coupling with body pitch. Gaukroger uses the term "body-

freedom flutter to describe this phenomenon. He further notes that the

flutter speed for this type of flutter may be low when compared to the

flutter speed computed without body freedoms included. In addition, the

reduced fre uency at which body freedom flutter occurs is also relativelyq

low. Measured in terms of wing chord lengths traveled by the aircraft

K^
k
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during one orc llation cycle, this travel distance at the flutter speel

is of the order of 100 chord lengths per cycle. These oscillations are

well within the range of interest of flight mechanics specialists.

The second type of symmetric flutter that can occur with body-frei

included is relatively insensitive to fuselage inertia. This type

of flutter resembles that obtained when the wing root is held fixed. The

critical speeds, mode shapes, and frequencies are very nearly the same

for the body-freedom and fixed root analysis. Gaukroger also determined

that the presence of the horizontal stabilizer had a favorable effect on

the body-,freedom flutter speed. Gaukroger's results were confined to the

aft sweep region.

An additional, definitive, report on the subject of body-freedom

flutter is given in Ref. 6 by Cunningham and Lundstrom. In Ref. 6,

an analysis is presented to predict the flutter speed of a sounding

rocket with an unswept,wing. Since their results have a direct bearing

upon the results presented later in this report, we -will review them here.

The Cunningham/Lundstrom structural dynamic model of the sounding

rocket included four degrees of freedom.

(1) Wing bending in the fundamental mode.

(2) Wing torsion in the first mode.

(3) Fuselage pitch

(4) Fuselage plunge

Unsteady aerodynamic effects are introduced via the familiar Theodorsen

aerodynamic theory used in conjunction with aerodynamic strip theory.

Their analysis found two critical flutter roots. The first was a

body-freedom root, while the second was a wing bending-torsion root.

The former occurred at a frequency of 26% of the bending frequency, while
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the latter occurred at 3.40 times the fundamental bending frequency. A

significant result of their analysis was that wing position relative to

the missile c.g. had an important effect on the value of the flutter velo-

city. As the wing leading edge approached the c.g. the body-freedom flue.

ter speed was increased. -As the wing moved aft, the body-freedom flutter

speed first declined, then slowly increased.

In Ref. E, the importance of including various degrees of freedom

.was discussed. From the calculations performed by modeling the system

as a binary or ternary system, it was concluded that the inclusion of

rigid body plunge was important, in that it raised the flutter speed when

compared to a similar computation excluding this degree of freedom. In

addition, although wing bending stiffness rather than wing torsional

stiffness was found to have the predominant effect on body-freedom flutter,

including torsional flexibility lowered the flutter speed by about °14%.

Since static aeroelastic divergence can be characterized as flutter

at zero frequency, we should be alert to the potential effects of body

freedoms upon divergence. This problem is lucidly discussed by 11jancock

(Ref. 7) for the case of torsional divergence; the effect of static aero-

elastic, flexibility upon the aircraft stability and control problem is

discussed in Ref. 8, also by Hancock. However, until recently the forward

sweep bending divergence problem has not been considered.

The purpose of the present study is to attempt to identify the

importance and the effects of the inclusion of body freedoms into a dyna-

mic aeroelastic analysis of a symmetrical forward swept wing. for this

study, we will employ a ternary model with body freedoms in pitch and

F_ 	 plunge and a single fundamental bending mode. Torsion is deleted to iso-

late the effect of bending flexibility on the forward swept wing divergence

problem. Our focus will be confined to the low frequency body freedom
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flutter phenomena. The particular interest is the determination of where

in the flight envelope body freedom flutter occurs relative to clamped

wing divergence. For this reason, quasi-steady strip theory aerodynamics

are employed since their mathematical representation is simple and rele-

tively easy to interpret.	 "

Model Parameters and Restrictions

The planform geometry of the aeroelastic stability analysis model is

illustrated in Figure 1. The flexible wing has a uniform chord, c, and

sweepback, A. The Junction between the wing and fuselage is located a

distance "(denoted as the dimension x) aft of the aircraft c.g. The swept

semi -span dimension of each wing is x.

The model has three degrees of freedom; these are:

1) Vertical displacement of the aircraft c.g., denoted as w,

measured positive upward.
i
4	 2) pitching of the fuselage about the c.g.-, denoted as e,

positive nose-up.

3) bending of the wings, measured with respect to the wing root,

positive upward.

Motion is restricted to be symmetrical with respect to the fuselage center-

line. This approach is essentially the same as that used by Pai and Sears

(Ref. 9) to study the effect of wing bending upon aircraft longitudinal

oscillation and by Cunningham and Lundstrom in. the previously cited work.

In the present analysis, however, the effects of an active canard/tail are

included, since the presence of active controls can modify our conclusions.

Strip theory aerodynamics are used to describe the airloads present

on the wings as they oscillate. These loads are assumed to be quasi-steady

so that the aerodynamic influence coefficients are independent of reduced

frequency.
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x	 Three equations are necessary to describe the motion of the aircraft

model. These equations are developed in the Appendix. One equation des-

cribes the vertical motion of the aircraft center of gravity. A second

equation describes the oscillatory behavior of the flexible wing, while

the third equation is written to describe the pitch motion of the air-

craft. These three equations contain differential operators and integrals

(seethe Appendix for details). By using Galerkin's Method, and .suitable

nondimensionalization, the equations can be written in matrix form. Sev-

eral parameters arise from this nondimensionalization and will be discussed
a a

before proceeding further.

Body-freedom-Flutter_ Parameters

With the assumptions and restrictions discussed previously, a set of

parameters, some of them nondimensional, appear in the equations of motion.

These parameters are as follows;
0

u = 2 mR/ MF

	

	the wing/fuselage mass ratio. Note that the

total mass of the aircraft is MF(1 + u)•

Y = x + sinA = the longitudinal distance from the aircraft c.g.
R	 to a wing center span, measured in swept wing

lengths. See Figure 1.

MT = M
F + 2 mt = total mass of the aircraft.

(1 +u) MF

Ip = MT r2 the aircraft mass moment of inertia in pitch,
measured about the aircraft c.g.

r2	 (R) 2 = aircraft radius of gyration, squared, divided by R2.
S = c = wing area of one wing

CLa = wing lift curve slope

wo = natural frequency in bending for the wing with the
fuselage fixed, in radians per second.

a
6
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(1)

qn 
2 p V2 cosz A, dynamic pressure parameter.

V  = V cos A, the air speed component normal to the wing
leading edge.

With the assumption that the time dependence of the motion is est , the

equation for the dynamic response of the model is

[s2[M] t S[B] + [K]] { C} = (F)

where

cl 
= w/s

C2 = Fi/,c

C- g = o

and w. F and O are modal amplitudes of the three distinct types of motion.

The three matrices, [M], [B] and [K] are defined in the Appendix.

The mass matrix [M] is nondimensional and contains cross-coupling

terms. These coupling terms are functions of the mass ratio U, the sweep

angle A and the longitudinal distance between the aircraft c.g. and the

single wing somi-span. One would suspect that, as in all flutter problems,

the mass coupling plays an important role in either controlling flutter or

triggering flutter. In particular, the coupling term M23 describes the

inertia coupling between wing bending and fuselage pitch. It will be

shown later that thi's term can be positive, negative or zero, depending

upon the wing longitudinal 'position x and the sweep angle A.

The aerodynamic damping matrix [B] is symmetrical. It is composed of

^f	 nondimensional terms that are functions of x and sin A. It, too, is fully

4 populated. The damping matrix has a common factor, called D in the analysis.

D = pVn SC[a/MT	 ^1)
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The stiffness matrix is composed of the structural stiffness of the

wing with respect to the fusela9e and aerodynamic stiffness terms. The

structural stiffness consists of a single terns in the diagonal position

associated with the wing bending mode deflection 6. The aerodynamic

stiffness matrix is a function of sweep, A, wing position x and a common

factor, Q.

Q " 2q  SCLak/MTt	 (3)

The aerodynamic stiffness matrix has several interesting features.

The first column, associated with aircraft plunge, consists entirely of

zeros. This is consistent with the fact that a small change in altitude

does not alter the lift. If only the K22 term is retained, corresponding

with the assi)mption that the fuselage is fixed, then static aeroelastic

divergence will occur when the wing is swept forward. This divergence

occurs at

q = 
-6..356 EI	

(4)
D	

CLa SAE sin A cos A

The above coefficient of -6.356 is in excellent agreement with the exact

solution for which the coefficient is -6.33. The difference occurs be-

cause the assumed bending mode shape used in the analysis is a polynomial

and not the exact solution.

In addition,the fact that the aircraft system stiffness matrix has

cross coupling terms proportional to dynamic pressure reminds us that the

classical wing divergence problem must be modified in the case of the

freely flying aircraft. Aeroelastic divergence will occur when the aero-

dynamic loads cause the stiffness matrix to become singular. This subject

will be discussed later, but two points will be made now. First, in our

model, the plunge degree of freedom plays no role in the determination of

8	
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aircraft divergence because of the column of zeros associated with this

degree of freedom. This degree of freedom is always neutrally stable

with reject to small perturbations as long as v remains constant. Sec

the presence of the canard/tail alters the problem, as does wing placem

This is so because these parameters introduce cross- coupling in the sti

ness matrix and these terms appear in the characteristic equation used

determine divergence.

The Model for an Active Canard

A model of an all-movable canard was also developed. The geometry

this canard is shown in Figure 1. The effect of this canard is assumed

be aerodynamic only. Any dynamic or inertial effects are ignored. With

quasi-steady aerodynamic theory the canard aerodynamic forces and moments

appear explicitly only in the c.g. and pitch equations of motion. The

quasi-steady angle of attack of the canard surface is:

a = O+Sp -  ( + )
	

(5)

It is recognized that the aerodynamic interaction between the canard

and the wing is considerably more complex than that gust described. How-

ever, this approach provides at least a starting point for the discussion

of actiYr, control of the aircraft with a canard.

The presence of a canard/tail control surface will add terms to the

right hand side of our equations of motion. These terms fall within two

categories: terms dependent upon the aircraft, degrees of freedom {c i ); and

terms depend upon the canard deflection, ao . The terms that are dependent

upon the aircraft freedoms must be transferred to the left hand side of

the equation of motion. Thus, the canard will now influence our aeroelas-

tic stability problem, even when it is not ;active. The term proportional

z(
e

{ y J

t
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to 6o can be made to be a function of {c} by defining a feedback control

law. This potential for improving the vehicle aeroelastc stability will

be discussed later.

The important parameters for the canard are called a and fain the

analysis. These terms are defined as

J w d/t (see Figure 1)

(T-) (
-Cac)

La

where Sc is the effective canard area and CLac is the canard lift curve

s  ope.

The Effect of Wing Position Relative to the Aircraft C.G.

To illustrate the potential effect of wing position upon body freedom

flutter, we will define an aircraft configuration typical of a fighter air-

craft. It should be noted at the outset that the parameters chosen are

typical of suggested designs for FSW fighters. Any resemblance to a

specific design is coincidental. The parameters chosen are as follows:

—CLa
(1Jrad.)

a
f ro

(	 1
WO
	

-

(rad/sec. (ft.)

MT/2S

(slugs/ft2 )

A

(deg.)

6.28 0.11 0.3 0._17 0.61 68.0 15 3.8 -30

We begin our study by placing the wing in a far aft position with

respect to the c.g , x = 0.45. We will display our eigenvalue analysis

results in root-locus format for clarity. The "gain" in this case will be

dynamic pressure, q. No attempt will be made to correct the aerodynamic

representation for Mach number effects, even though speeds are considerable.

Let us first Locus on the eigenvalue root that begins as the pitching

or "short period" mode. This .root begins at the origin since; without

- 10
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dynamic pressure, the pitching mode is neutrally stable. A root-locus

plot of this short period root is shown in Figure 2 for a number of dyna-

mic pressure values. The root is oscillatory and well damped until. a.

velocity equal to about 0.8 VDO , where VDC is the clamped wing divergence

speed. tip until this velocity, this mode has been acquiring a significant

amount of bending deflection. After 0.8 VDO , the root begins to move

rapidly towards the right half plane as velocity is increased. At V - 0.89'

VpC . the root becomes unstable at a frequency of 22.37 rad/sec. correspond-

ing to a reduced frequency of k = wb/V - 0.026.

The examination of the flutter mode reveals that at the time that the

bending displacement reaches its reaximum upward value (	 1.0), the air

craft plunges downward 0.55 units while the aircraft pitches upward 9'.8

degrees. Upward fuselage motion lags upward bending by 174 degrees while

nose up pitch leads by about 8 degrees.

Accounting for different coordinate definitions, these results are

similar to those observed by Cunningham and Lundstrom for their rocket.

Turning to the bending mode behavior,we see in Figure 3 that this mode

is more highly damped than the pitch mode. At about 0.8 V pC this mode

begins to develop highly damped oscillatory characteristics. An increase

'in dynamic pressure is seen to drive the frequency of the bending

mode down, while the pitch mode frequency is increased. A classical fre-

quency coalescence occurs, resulting in one mode becoming unstable. As

velocity is increased slightly beyond 1.0 V
pC

, the bending mode contacts

the real axis in Figure 3. After this point, the eigenvalues for this

mode are no longer complex conjugates, but are real and distinct. One

root moves le Ft, in the direction of increasing stability, while the other

rapidly moves right with increasing velocity. As this root enters the

right half plane at the origin, aircraft divergence occurs.
	 f

ix{
9 11.



$4

ROOT LOCUS PLOT OF

PITCH BRANCH

X * O, 45, A= 
,300,

LABELLED POINTS -

INDICATE V/VDC RATIOS,
,lam (RAD/SEC)

DC
(;, 887	 25 —



ir{

l

F

Ir
,

r
CM

i	 ^ •

ui

A

v

^	 H

• ? Q	 + Q O	
Cli^^ll M	 N	 r-1

O

M

'O ^O
i

,

tQ

Ln	 :O

Q
co

C '~1^w

a

MMLn
• co 	 n /i

a^.

CD

WO Cl 'N
cn N^V

O
Ln WC .-i'O d A

I
= FX z G

M

1. 2A LJ
W

a V

f a}

O

1

13



V,

AIRCRAFT DIVERGENCE

Unlike clamped wing divergence, where the aircraft is restrained

against motion, aircraft aeroelastic divergence involves wing bending

and fuselage pitching. Mathematically, the eigenvalue problem that deter-

mines aircraft aeroelastic divergence comes from the requirement that, at.

divergence, the total stiffness matrix, including aerodynamic and structural

effects, must be singular. The eigenvalues are related to the dynamic

pressure. In terms of an eigenvalue solution for the dynamic equations,

this divergence solution is valid if s = 0.

For a particular planform geometry, and with given aerodynamic charac-

teristics and structural stiffness (in our case, this stiffness is charac-

terized by the value of the root-fixed bending frequency), the three

degree of freedom model will yield three values of q for which the system

is'neltrally stable. One of these values is zero, the second is unde-

fined', while the thir& value is a function of the previously mentioned

variables..

The zero flight dynamic pressure value indicates that the aircraft

is neutrally stable in pitch if there is no forward speed. This occurs

because an aerodynamic moment about the c.g. provides a "pitch spring"

that-, in turn, provides the restoring moment if the system is perturbed in

pitch. In addition, the system is neutrally stable in plunge at any dyna-

mic pressure since there are no 'O plunge springs",aerodynamic or otherwise.

The third root is meaningful. With the definition that q DC is the root-

fixed divergence speed, the aircraft aeroelastic divergence speed is qDA,

given by:

q	 4	
^5(y cos A - af)

M	 DA = DC	 -
(y cos A -5 of -0.4 sin, A cos A)

14	 +
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VDA	
r	

s jy cos- ,	 af)	 ....,. 1/2
TD 	 (y cos A -5 of - 0.4 sin n cos A

where y	
+ sin

There appear to be two limiting cases for the above formula,` If a

G	 tail is used, then of is less than zero. As of increases, due either to

the use of a large 'horizontal stabilizer or a long tail length, the ratio

VDA/VDC approaches unity. On the other hand, when of is greater than zero,

ratio of VDA/VDC is infinite when

df = 5 
s . 25 

sin A cos A

As df increases from this value, the aircraft divergence dynamic pressure

becomes negative. At some value of of the airplane will be statically

unstable. In this case, VDA,VDC is zero. As df increases, the ratio

becomes more positive and finally approaches unity as df gets larger.

These limiting trends are identical to those observed by Zeiler in

a more general theoretical study of FS14 aircraft divergence. It is clear

that the analysis of static instability must reflect the presence'of a

canard/tail and include the aircraft geometry.

The mode shape at aircraft divergence is given ass

l
o ( y + T6 Si n 

A) sin A cos A
fi_ y cos A - of

If the aircraft is stable, then the numerator, is greater than zero. The de-

ngmtiator will be positive if the airplane is statically stable with the

canard in place. in this case, a FSW aircraft will have an aircraft

divergence mode consisting of upward wing bending and nose-down pitch

(BA < o),
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For the aircraft whose dynamic stability properties were

discussed previously, the ratio VDA/VDC is 2.59, well above

the clamped wing bending divergence speed. Thus, we can assume`

that body freedom flutter is critical, unless a high frequency

flutter mode is present at a lower speed.

The Effect of Movingthe Wing Root Forward

Figure 4 is a root .-locus plot of the results of an eigen-

value analysis of the aircraft equations of motion. Both the

bending mode and the pitching mode roots are illustrated as a

function of velocity. In this example, x = 0.35 so that the

wing root has been moved 0.108 forward of that shown in the

previous example.

The striking difference between this example and that shown

previously is that the "ancestry" of the unstable mode har its

roots in the wing bending mode. Wing bending coupling introduced

into the pitch mode stabilizes that mode and actually causes it

to be highly damped.

A similarity between the present case and the previous case

is that, despite its ancestry, the flutter mode still occurs

at about the same frequency and still involves coupling among the

three degrees of freedom. Significantly, however, the flutter

speed has increased by nearly 9%. This case undoubtedly more

closely represents an actual aircraft configuration with the wing

center of pressure in close longitudinal proximity to the aircraft

c.g.
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Some parameter has apparently changed significantly to cause

the flutter mode to switch its ancestry. The bending mode has

been modified so that it no longer contacts the real axis in the

left half plane. There is still an aircraft divergence speed,

but it is at 6.08 VOC , and is associated with the pitching mode.

One significant difference between the x c 0.45 case and

the y - 0.35 case is that the.mass coupling term M2.3 has changed

sign, from minusto plus, as the wing root moved forward. The

expression for this term in the mass matrix is

M =	 0.4y + 4 sin j
23 1 +N/	 W

This term is zero if x = xo , where

For the 30 degree forward sweep case,

xo =	 = 0.3611

Figure 5 shows the root locus plot for the case where x = xQ

The critical mode still appears related to pitch mode instability.

However, a distinct "pinching together" of the bending root and

pitching root is apparent. Comparing Figure 5 to figures 3 and 4.

18

+ H

(10)

(11)

r

(12)



k

V	 #

k

}

t	 {
R

i
M
Ln

O
t

W
C/)

11Li
A?

a ^ °	 o
rl o

M	 O

M
•
O O	 C

i
O tD

p1I o
Ln C

°
O	

a;
O
--1

i
O

cn
O

u
N

v

C	 C:^).1 1Cf	 r1 N
r I

,-4
ea
M

Z O F- G

` H IX a
Cl- A
	 C/)

..-.
OM

¢

1
Fes-
Q

Wi

2 0
po

11-S	 cn w -S o
M QC),. Z Z

^ II ^'

A

^ O
CD

^
ui
w MV

A
-ell.	

~/

19



zr
ty

we see the transition of these characteristic root locus plots

as the mass coupling changes.

Figure 6 illustrates the behavior of the bending root: for

x = 0.30 as velocity changes. In this case, the pitch mode is

statically unstable and the roots for that mode lie in the right

half plane at all, values of velocity. Note that the flutter

frequency is relatively unchanged from other examples, but it has

declined as i decreases. On the other hand, the flutter speed

has increased to a little over 2% above VDC'

A summary of the figures presented previously is contained

in Figure 7. In this figure the ratio V DF/VaC is shown as the upper
curve and 1s plotted on the left scale, against X while the ratio

wF/wo is plotted on the right, also against ?R and is the lower
curve. Two vertical lines are drawn to indicate; the position

where mass coupling between bending and pitch changes sign; and,

the position, x = xs below which the aircraft becomes statically

unstable at any speed as a rigid aircraft. Mention should be made

r

	

	 that static aeroelastic deformation causes the aircraft to be

unstable at a low q before this value Ws is reached.

An alternative to changing the wing root position is to change

the wing sweep at a constant root position. We would expect to

see similar behavior of the flutter speed since the longitudinal

C.P. position is changing. Noweve, ,, , in addition, we are changing

the aerodynamic coupling by changing the sweep.

Figure 8 shows the results of a quasi-steady flutter study for
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In this figure, the ratio of the body-freedom flutter speed at

a given sweep angle to the body-freedom flutter speed at zero

sweep is plotted. This curve, V F,/VFO , begins at 1.0 when A - 0

and declines as the wing is swept forward, The minimum value of

k body freedom flutter speed is reached at A a -30 degrees. There-

after,,, the speed'increases slowly.

a
	

As the wing is swept forward, the theoretical clamped wing

bending divergence speed drops rapidly (it is infinite at A - 0

degrees) and reaches a minimum at A - -45 degrees. Also shown

in Figure 8 i the ratio of 
VF 

to VDO . This ratio begins at 0

j	 when A - 0 and increases with forward sweep angle. A vertical

i	
line marks the transition from rigid aircraft static stability

1
to static instability.

.'	 SUMMARY

We have seen that a forward swept wing aircraft can suffer

from body freedom flutter due to coupling between bending and

rigid body motions, in this case pitch and plunge. One signifi-

cant parameter th--: determines the degree of severity of this

type of flutter is the nondimensional distance x, For far aft

wing positions, mass coupling.is introduced that tends to

introduce wing inertia forces that cause nose up pitching motion

as the wing vibrates upward. As the wing root is positioned closer

to the :aircraft c.g. this inertial coupling decreases and finally

changes signign at a position xo. If the wing longitudinal CP is

close to the c.g. we will have an aeroelastic instability occurring

near the clamped wing divergence speed of the aircraft. However,
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this instability is oscillatory, not aperiodic. While the reduced

frequency of the body freedom flutter mode is small, in the range

of 0.01 to 0.03, the flutter frequency is of she order of one-

quarter to-one-third of the fundamental bending frequency of the

fixed root wing.

How closely these results from a greatly simplified model

match the actual behavior of a high speed aircraft with all its

complexity remains to be seen. However, a simple wind tunnel

►'°"

Ir	 R

test by Foist and Sanger at Purdue in April of 1981 showed that	 y

body freedom -flutter of the type described could occur. In addition,

although finite span aerodynamic effects and the effects of compres-

sibility will surely change the values of the body freedom flutter

speeds calculated, the ratio of flutter speeds computed to the

fixed root divergence speed should be less affected.

Finally, the significance of the fixed root wing divergence

speed to the aircraft dynamic response characteristics should be

discussed.

Although the mode of instability is not fixed root wing divergence,

the speed VQ0 is highly meaningful and not to be ignored. This

speed is a benchmark to which all wing flexibility effects must

be referred. At about 0.6 VpC , the wing begins to rapidly lose its
	

{
stiffness (aerodynamic plus structural). Beyond this point coupling

between flexible modes and rigid body modes is likely to be

significant. This coupling and decreased stiffness may have	
G

important consequences to handling qualities and fatigue life.

J

{
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The mass matrix LMT is:

1

i	 j

[131 = D
5.

1 04
4o!+

2_4

s	 ^4s

1L' trr^ww 1 3
K	 .	 !

[A4 -	 j o4
jj	 M23(7joI^

-	 2 -4y	 - -x_.....51-A	 r'^

The aerodynamic damping matrix is [B];

—
 (

!L 5 + 4 siNJl	 + s. Iaw^
'	 4s	 1%

5
L



qR *	 ,

The system stiffness is composed of the sum of the aerodynamic stiffness

plus the structural stiffness, CM is computed to be:

^	 _ 1

Cas.A

Ck̂  = a I 0 ^	 S (6-o^M)

k

•-
 C
r

	

	 L	 _
^ t-Ŝ. 'L+AN^	 ^ COS,

10

2	 0 D
4a^	 1+	 0 0 0

Lot IA4.rl
A Model for an Active Canard

A model of an all-movable canard was also developed. The geometry of

this canard is shown in Figure A. The effect of this canard is assumed to

be aerodynamic only. Any dynamic or inertial effects are ignored. The

canard induced aerodynamic forces and moments appear explicitly only in the

c.g, and pitch equations of motion. The quasi-steady angle of attack of

the canard surface is:

V

The canard lift per side is:

L c ' Se. C^	 (4) d4 e.U
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This may be written as:

L L	 S CLsj + 60) 	 Ir	 JPI	 (5)

where

k, — St Lae, S C Lot
3

1i
m	

e	 s	
9and	 a _ d /JL	 UY W a
1

i

The pitching moment, positive nose up, is found, for each canard surface,
i

l	
to be:

L,	 (6)
y

r.
The lift and pitching moment expressions are next nondimensionalized

to conform to our nondimensional equations of motion. Now, Lc contributes

to the lift equation as follows:

aLO
,

r	 (,, =	 Lc .. 	 O	 k i-s

MT

(7)

V

tA?j	
Co sz^t



a M► SCwt
3	 CoS2^	

r-----	 (8j

z
MTJ

11K, e^	 (g)

(10)

IJ 5 C L A) -

	

COtA	 Mr
The nondimensional pitching moment contribution to the equations of motion

is:

M`	 L	
c>

M T^

u	 (l l ^
i

a^ 0
CostJl

where	 k	 Ld,

(12)

(13)

	

P	 /^
NAT
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P

v^ Sc L^ ^,^...
33 MCOS'J-^ 	 (14)

The presence of the canard surface will add a set of matrix. terms to the

left hand side of the equations of motion.

o Q k,3
0 0 0C	 © ° Kvi

(15)

8%, O
'+S0 O O

15 3\ O 33

In addition, a term due to 
6  appears on the right hand side.

F11 	Q	 O 80	 (16)
 
I 1

COO d

The canard deflection ao is related here to the three degrees of freedom

in the problem by the following relationship:

c
	 Lcl 

CS C j0 C3($? A 	 ^i	 (17)

where the _terms C 1 , C2 and C3 are complex functions in general. For sim-

pl i i ty, let

C, (S)	 C,o + S'C'E + S' C,z	 (18j

I
e
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rp	'^ s

F
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^ 3 = C3o + seat + sz ^3 t

	

so that	 '	 !

4 s'` tCit.
With these definitions, the canard deflection causes a set of generalized

forces given by

0^ ,,,SCE { -^	 Q., C1 C3

	

^Fs	 .""_	 0 p Q	 ^ij 	(22)
Cos`	

d e., dC,, ^C3

s
C%* C'&O

 o	 o	 ,p	 (23)
cas^Jl	 a ^,o a c,,d d c3^

%l C-m C 3



A] =
2 W
5 1 t-w

The matrix equation of motion now becomes:

S2- 	 + S ^ t I + E Q3
where A. B and K represent the augmented system matrices, given by:

 
(26),^ M^ — (^	

(Y)

IFA C 	—	 ^
c^sjJ

L

[T7e _ 	^	 c2>>care:,A

Ce 1	 (28)
J co?A

[B*1 and [K*] include the canard damping and-stiffness, respectively, with

the control locked (60 = 4);

The augmented mass, damping and stiffness matrices are:

2
^' — 4ezz	 ae,t

^a

I 	
^

	

104	 MONO

7ttij)	 ►t^	 ^s4os
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where = 2qn SCE fI^MT`^ Cos2A) 2q SC^af/MTR

fI	 Q
S.

I

D d f 1cosA

'D

_
 D (z

r ..b 4V S%;A
L81

?. D
	 l09 ID

4Gs

(.&, y + L soh A)
9s

where D = pvn SCLa/MT

Finally $ the augmented stiffness matrix is:

D d/CosA D yZ + sk" A
IZ )

d f DA*34

Ck7 C10 ( (td^, A ' C,
CoAA

— X3 0

O 'L

,o4 wo ^^qas
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