
, . 
Time Series Modeling of Human Operator Dyn;;1mics in 

Manual Control T;;1sic.s 

, .. '* ',." ~,.,.. .; ... *l\ 
Daniel J. Biezad and David K. Schmidt 

School of AeronauUcs and. Astronalltic~' 
. Purdue,Uni versit'y ....... . 

West Lafayette,' India.~a 

ABSTRAC'l' 

A time-series technique is presented for identifY,inS' the" 

dy~amic characteristics of the humanoperat'or in ~~~al controi 

tasks from relatively short records of" experi~~nt~l d~ta· •. C~~-' 
trol of system excitation signals used in the identificat!~~' is 

." ,".,", ".( I ~.,.. ' .. ' :i": ,5,. :.C;~~ t " .~ f,,;', \ .. ~.;'1 

not required. The approach is a multi-channel idelltification 

technique for modeling. multi -input/multi-output' situati'~ris. 
The method presented includes statistical test's, for' v~:Yidity, 

is designed for digt'tal ~omputatio~; a~d y:teid~ esti~ate~" i~~: 
" ~" ',: " ;,.: .(,..',;1.:':.1 .. ,:' '.:~ ~"! \,. ',; ::,:~ , .. ~.:" 

the frequency responses of the human operator. A comprehensive 
W • 'f' .. , ~ .. ' r ,.:.~. '.\ ',.;'/: '{ j./<r.~:~ t '~:':~f 

relati ve power analysis may also b~ performed for validated 
'. .'~ ," :':' :." 'I • 

models. This method is applied to severa.l set's' of expe~im~~ta,i 
data; the results are discussed and shown to compare fa~~:~'ab'~y 

; 1: 
, '~.' :, .: :. :':.' ~ 

with previous research findings. New results are also 

presented for a multi-input task that has n~t". b'e~n ~~~~i'ou~iy' 
','I.:'.·~ ; ... ~.; " L ,: 

modeled to demonstrate the strengths of the method. 

NOMENCLATURE 
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channel 

e(t) 

f(t) 

.>."'~.:: .' . ~;-: ~:; L_!.l.I" .. ; 

one of the physical variables used to describe $ystem 

behavi~r in the time domain (observed ~~~t:;) 
, .' ;:, i . ,'ti fl, ~" ; "" 

vehicie subsystem. ()utP~t vector at time "t" 

manu~l c~ntrol vector at ~ime "til tor ~1,1~~:; s'ub~~~:~e;j, 
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GM,k 

G(M,z) 

discrete transfer function matrix 

transfer function matrix relating 

subsystems "i" and"j" 

predictor matrix at lag "k", k .. M 
M 
r G z -k· 

k=l M,k 
G element i,j in GM k' 
ij,k M ' 

-k 
Gij(M,z) r Gij k z 

k=l ' 
i.i.d. 

k 

M 

independent and identically distributed random variables 

index for lag 

maximum or,der :for model 

m 

N 

current order in i~entific~tion process 

number of vector samples 

n number of channels 

T matrix transpose (* conjugate transpose) 

T(m) Toeplitz autocorrelation matrix for order "m" process 

X( t) joint process v"ector 
-1 

z backward shift operator 

t5(t) control surface command vect!,r at time "t" 
6 uniform ~ample interval in seconds 

w frequency (rad per sec) 

1. INTRODUCTION 

A pilot model is a mathematical expression which balances simplicity 

of mathematical structure with observed empirical reality according to the 

purpose for which it is used. A key question always facing the aviation 

community has been how to develop and use these models in order to specify, 
1 design, and evaluate piloted systems so that they provide efficient, p:ro.-

ven performance while admitting the pilot "symbiotically" into the control 
2 ... ; '. . 

loop • The successes'of describing function and optimal control mode;l.s in 
·3 meeting this objective are well known ~ but the identification of tpese 

models is hindered by an dependence on long data records, a. priori parame-
,," ,':. ,.'" . 

ter knowledge, and a precisely controlled experimental environment. 
4 A time series approach to pilot modeling, introduced ten years ago, 

initially appeared as just another "technique"; but recent applications of 

time series analysis to complex multi-channel tasks5 i~dicate that this 
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approach may work well on relatively short data records with little or no a 

priori parameter knowledge. Moreover, the process of modeling provides a 

unifying mathematical "framework" relating recent research in closed,loop 

multi-channel identification theory to actual laboratory or flight test 

data records of relatively short duration. The "framework" includes estab­

lishing model existence, applying a proven identification technique, vali­

dating the resulting model, and analyzing model properties relative to 

model purpose. 

Early researchers using time series to model manual control behavior 

recognized that obtaining single or multi-channel pilot models is a doubly 

formidable task because of the adaptive nature of the pilot and because of 

the inherent loop closures in the overall system6 • Shinners4 and Agarwal7 , 

in their pioneering work for single-input, single-output (dual-channel) sys­

tems, found that simple discrete transfer functions adequately described 

pilot manual control output in compensatory and pursuit tasks but did not 

consider the theoretical question of model existence or stability. The 
8 9 work of Goto, based on the theoretical methods of Aka ike and Whittle , 

considered model "existence" questions for a two subsystem closed-loop 
10 structure ,but these methods assume that the autocorrelation statistics 

for the process are known a .priori. 

The purpose of this paper is to provide a unifying framework for time 

series modeling by deriving the specific theoretical and experimental con­

ditions required for model existence and uniqueness, to apply an identifi­

cation algorithm which guarantees stability and does not require a priori 

statistical information, and to demonstrate the application of this iden­

tification process in case studies. The derivation of existence conditions 

is applicable to a three subsystem closed-loop structure which contains the 

two subsystem results of Goto as a special case. The derived identifica­

tion algorithm is called "Normalized Predictive Deconvolution", NPD, and is 
11 a generalization of the Levinson-Wiggins-Robinson algorithm and the 

12 multi- channel Maximum Entropy Spectral Estimation algorithm • 

2. THE MODEL 

The pilot-as-controller discrete linear model is shown as part of a 

three subsystem structure in Figure 1. The double lines represent vector 
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precesses from three subsystems: the vehicle, the pilot, and the flight 

control system. Autoregressive (Markov) noise is added to each subsystem 
13 to represent a physical disturbance ; that is, injected noise is a linear 

sum of past values plus an i.i.d. discrete "shock" or "puls,e". Mathemati­

cally this representation may be concisely represented by 

X(t) = G(z)X(t) + ~(t) (1) 

where X(t) is a joint process vector partitioned into subsystems as 

(2) 

G(z) is a matrix of transfer functions in terms of the shift operator "z" 

which may also be partitioned into a general form given by 

0 G12 (z) GI3 (z)=Gp(z) 

G(z) = G21 (z)=Gf (z) 0 G23 (z) (3) 

G31 (z) G32 (z)=Ga (z) 0 

The injected noise, ~ (t), is assumed both autoregressive of finite order 

"L" and uncorrelated between subsystems. Thus, it may be represented by 

the block diagonal form 

~(t) = C(L,z)~(t) + p(t) (4) 

L -k r CII kZ 0 0 
k=l 

, 
L -k C(L,z) = 0 r C22 kZ 0 (5) 

k=l ' 
L -k 

0 0 r C33 kZ 
k=l , 

(6) 
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(7) 

The individual elements in Equation (3), in contrast ,to the finite 

order assumption ~or the noise representation, are expressible either as a 

ratio of discrete polynomials (transfer function) or as an infinite 
-1 

sequence in the delay operator z (pulse response). Thus, between subsys-

tems "i" and "j", 

00 

-k 
Gij(z) = ~ G z L i 0 k k=1 ,J, 

(8) 

If the infinite sequence of Equation (8) is truncated at or<;1er "M", an 

approximation to the mathematical system of Equation (1) results which will 

be referred to as the joint autoregressive representation (JAR). The trun­

cated elements of G(z) are given by 

M -k 
Gio(M,z) = r Gij k z 

J k=1' 
JAR (9) 

By combining Equations (1), (4), and (9) the JAR may be written as 

X(t) = G(M,z) X(t) + n(z) pet) (10) 

= 1 I - C(L,z) 1 (11) 

Cii(L,Z) = 
L 
r C z-k 

k=1 ii,k 
(12) 

14 The joint innovations representation " JIR, is obtained by multiply-

ing Equation (10) by Equation (11) and solving for X(t): 

A(M,z) 

X(t) = A(M,z) X(t) + p(t) 

= ~ A. z-k= IC(L,Z) + G(M,z) - C(L,z)~(M,z) 'I 
k=l-r1,k 

(13) 

(14) 

The block diagonal form. of Equations (2) and (5).i9 now taken into 

account in the relationship between the JAR and JIR. Denoting each 
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subsystem of X(t) by subscript "i", Equations (13) and (14) are equivalent 

to 

3 
~(t) - CII(L,~) ~(t) + j!11 1- CII(L,.)I Glj(M,.) Xj(t) + PI(t) (15) 

By comparing Equations (14) and (IS) one obtains 

Cii(L,Z) = Aii(L,z) 

The JIR described by Equation (13) may also be put into the form 

X(t) 

r(M,z) = 

= r (M, z) p ( t ) 

M -k 
1- E~kz 

k=1 ' 

-1 

(16) 

(17) 

. (18) 

(19) 

The autocovariance matrix is found by post multiplying Equation (18) 

by the transpose of X(t) and taking the expected value: 

where 

5 The power spectral density of this process is' 

txx(w) = /r(M,z) 6 p(o)r*(M,z)l
z 

= e jw6 

which has the property 

(20) 

(21) 

(22) 

(23) 

An approximation to the frequency response between variables "1" and "j" 

may be found using 

6 

jw6 e 
(24) 



If P(O) is diagonal, the relative power in state "i" is defined as 

(25) 

and the noise power" contribution to channel "i" from the noise source· in 

channel "j" is 

qij(W) = rij(w) ~ Pj.(o)r~j(w)p 1.~ 
J ii(w) 

(26) 

Thus it is shown how the JIR representation of Equation (13) may be 

transformed into the JAR representation of Equations (9) through (12) using 

the recursions of Equations (16) and (17). Once validated, the properties 

of the identified model may be analyzed using Equations (20) through (26). 

There must be assurance, however, that these model representations exist in 

theory, and this topic is addressed in the next section. 

3. THE EXISTENCE QUESTION 

The primary factors in the determination of an acceptable pilot model 

are suitable experimental conditions, the assumed model structure, and the 

identification technique. Since the harm done by a faulty experiment, simu­

lation, or flight test permanently voids the data, the conditions required 

for a unique and valid .model are very important. 

THEOREM 1: The JIR of Eqn.(18) is unique, and there is a unique map­

ping· between the JAR of Eqn. (10) and the JIR of Eqn.(l3) providing 

Eqn.(23) holds for the spectral density and providing there is a delay in 

every path of Figure 1. 

For proof see the Appendix. 

THEOREM 2: Given that the transfer matrix r(z) has been identified 

from realization set {X(t)1 t<N } generated by r(z), necessary conditions 

for 

are 

lim t(z)=r(z) 
M, N+CXi 

(1) The joint pro~ess X(t) is full rank 

7 
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(2) There is a unique factorization 

~ (00) = r(z)UAI/2(UAI/2)Tr*(z) 
xx z=ejooA 

A > 0 and U Unitary 

For proof see the Appendix. 

(28) 

(29) 

The practical implications of these theorems for flight simulations 

and flight tests are that sufficient noise sources be used to excite the 

vector process X(t), that there should be no feedforward paths which 

violate the requirement for a delay in each loop, and that no anticipatory 

loops are closed by the pilot for the same reason. Although some identifi­

cation schemes allow correlated noise inputs l5 , there is no way to distin­

guish them from feedforwards and/or anticipation. If validation tests, 

however, indicate a positive definite and diagonal autocorrelation matrix 

for the noise inputs, then there is evidence that a sufficient condition 

has been met for uniqueness. 

To summarize, the design or test engineer should assure 

(1) sufficient noise. excitation in measured channels; 

(2) pilot anticipation negligible (implies random or random' appearing 

inputs; 

(3) physical delays exist in each channel, including feedforward, which are 

significant relative to sample time; 

(4) data realizations are not predominantly unstable or nonstationary; 

(5) .. validation checks include a whiteness test for the estimated noise 

realizations. 

4. MODEL IDENTIFICATION AND VALIDATION 

Given the conditions are met for model existence, an identification 

scheme is desired which identifies the JIR of Equation (13) from data real­

ization set {X(t)1 t<N}. It is especially important that the scheme be 

stable (identified parameters are bounded) and not be dependent on a priori 
'. 

knowledge of autocorrelation statistics. The identification technique 
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presented here is called Normalized Predictive Deconvolution (NPD), which 

acts directly on the data sets and results in a stable and parsimonious 

JIR. 

The basic principle of the NPD scheme follows that est&blished by Wig-
11 , 16 gins and Robinsort who generalized Burg s recursion for single-channel 

systems by hypothesizing a set of backward predictors given by 

X(t) = B(M,z) X(t)+p'(t) 
M 

B(M,z) = E B, zk 
k=l M,k 

(30) 

(31) 

(32) 

By post multiplying Equation (13) by Xl'(t-k) and Equation (30) by 

XT(t+k) taking expected value, and expressing the result in a block 

matrix form, the "normal equations" of Reference (17) result: 

where 

I 

-B m,m 

-A m,l 
-B m,m-1 

-A -A m,m-1 m,m, 
-B m,l 

R (0) xx 

T(m) = • 

I 

R (-m) 
xx 

m 

... 
••• 

T(m) 

R (m) xx 

• 

R (0) 
xx 

= R (0)- E A k R (-k) 
xx k=l m, xx 

m 
R (0)- r B k R (k) 
xx k=l m, xx 

... 
'~ .. (33) 

(34) 

(35) 

(36) 

In the NPD scheme the solution to the "normal equations" is recur­

sively generated as order "m" is incremented without knowing the autoc,orre­

lation matrices a priori. The top and bottom rows of Equation (33) are each 
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weighted with invertible forward and backward prediction scaling matrices 

SA(m) and SB(m) so that 

-1 
= SA (m+1) Am+l i , o < i < m+l (37) 

(38) 

o < i <m+1 (39) 

-1 
-Bm+1 ,O = SB (m+1) (40) 

To derive the forward recursion formula (the backward recursion fol­

lows analagously), the scaled bottom row of the "normal equations" is mul­

tiplied by an arbitrary but invertible matrix and added to the top row of 

Equation (33). Next, the order is incremented from "m" to "m+l" and the 

scaled results are expressed in the form 

I 

-Bm+1,m+1 -B 
m+l,m 

. . . 
• • • 

-Xm+l,m+l QF(m+1) 
T(m) = 

I 0 

... o 
(41) 

••• 

By matching the terms of Equation (41) with the previously obtained linear 

combination of rows the following recursion results: 

(42) 

(43) 
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" 

where 0 ( i ( m+l in the above expressions, and where the forward and back-

ward prediction error matrices are given by 

m 
€F(m+1) = R (m+1)- r A m+1 k R (k) xx k=1 m, - xx, 

m 
€B(m+1) = R (-m-1)- l: B· R (-k) 

xx k=1 m,m+l-k xx 

By defining 

it may be shown using matrix algebra that 

-1 

= S~1(m+1) SA(m) 

-1 

-1 

Xm+l,i 

-1 

11 
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(47) 

(48) 

(49) 

(50) 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 



If the scaling matrices of Equations (37) and (39) are chosen to be 

the "identity" matrix, then the classical Levinson-Wiggins-Robinson (LWR) 

algorithm of Reference (11) results in a normalized form. If the scaling 

matrices are chosen so that 

-1 

S-I() QFI/2(m) Am:::; (57) 

-1 

(58) 

then Equation (46) defines the Partial Autocorrelation Coefficient (PAC)I2 

matrix. In addition, if the following approximations are used: 

where 

p(m+I) :::; ~/2(m) 

~(m) = 

N 

-1 
1/2 

~B(m) RB (m) 

~(m) = r !B(m,t-I) IB(m,t-I) 
t=m+I 

-T 

m 
iF(m,t)=SA(m)IF(m,t) = X(t)- r A X(t-k) 

k=I m,k 

m 
iB(m,t)=SB(m)IB(m,t) = X(t)- E B X(t-k) 

k=I m,m-k 

(59) 

(60) 

(61) 

(62) 

(63) 

(64) 

then the multi-channel Maximum Entropy Spectral Estimation algorithm of 

Reference (12) is obtained. 
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18 Morf, Vieira, and Kailath have shown that there is a one-to-one 

correspondence between the PAC matrices defined above and the autocorrela­

tion matrices for a joint stationary process; moreover, they show that the 

characterization theorem of stochastic processes assures P~C matrices with 

singular values less that unity. 

To determine the order "M" at which the above recursion is stopped, a 
19 variation of the multi-channel Akaike rule ,as modified by the recommen-

20 dations of Kashyap ,is presented here as the PAC .selection criterion. 

This criterion assumes that, as the estimates for the PAC matrix elements 

becomes smaller, they become more random, thus c~~sing the determinant to 

also become random, To balance this effect with a term sensitive to both 

order "m" and number of channels "n" , the following expression was chosen 

as the PAC selection rule: 

2 
J (m) = N log Idet p(m)1 + m(n) log N 

p 

The order resulting in the "first" minimum value as 

mented is chosen for the JIR. 

order 

(65) 

"m" is incre-

Validation is accomplished by testing 

whiteness. These residuals are 

matrix set 

estimated 

the forward innovations for 

using Equation (62) and the 

j t ( N o ( k (66) 

which is visually tested for whiteness over a reasonable number of . lags 

"k". Plots of JIR statistics vs actual statistics (if available) and time 

histories of actual· vspredicted JIRdatamay also be used. 

Summarizing, a technique called Normalized Predictive Deconvolution 

has been presented to identify .a stable JIR of Equation (13) without a 

priori knowledge of the process autocorrelation matrices shown in Equation 

(34). The algo~ithm is initialized at m=O with 

where Equati~ns (60) and (63) are used to approximate R (0). The scaling xx 
matrices are then chosen, as in Equations (57) and (58) for example, then 
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by definition 

-1 

(67) 

-1 

(68) 

and Equations (38) and (40) are used to find X 0 and B O. 
m, m, 

The PAC matrix p(l) is then computed from Equations (59) through (64), 

from which PA(I) and PB(I) are found using Equations (49) and (50). The 

new forward and backward predictors are determined from Equations (55) and 

(56) for m=1 and finally the value of the PAC selection rule using Equation 

(65) is found. If desired the order is incremented and the process 

repeated. 

Once the JIR is identified the JAR may be determined using Equations 

(16) and (17). The model characteristics are then calculated using Equa­

tions (22) through (26). Case studies which demonstrate the application of 

this identification process and analysis are presented next. 

5. MODEL ANALYSIS: CASE STUDIES 

In order to demonstrate the application of the JIR identification pro­

cess on actual data sets a' multi-channel "piloted" simulation was accom­

plished in the Flight Simulation Laboratory at Purdue University. Three 

pilots performed lateral bank angle tracking tasks using aileron deflection 

inputs with and without rudder deflection 'inputs for assistance. 

In addition to obtaining the data sets, the goal of the simulation was 

to obtain subjective pilot ratings and comments for three vehicle confi­

gurations. The configurations were representative of large aircraft with 

the dutch roll modes selected to yield levell, 2, or 3 handling qualities 

as currently in military specifications21 • Table 1 summarizes the dutch 

roll characteristics and the corresponding pilot ratings and comments 

obtained during the simulation. Approximately 25 seconds (500 points at a 

20 Hz sample rate) were used for modeling from each data run which was typ­

ically 60 seconds long. 
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The pursuit display shown to the pilot for the three-channel simula­

tion (channels were aileron error, aileron deflection, and rudder deflec­

tion) is shown in Figure 2. For the two-channel simulation the "ball in 

the window" portion of the display was masked and nO ru9der inputs were 

allowed. Note from the ratings and comments in Table 1 that there is a 

considerable degradation for each configuration between the two-channel and 

the three-channel cases. This degradation is most severe for the level 3 

configuration where a lateral pilot induced oscillat~on (PIO) resulted when 

the pilots were allowed to use rudder inputs. 

The commanded bank angle disturbance was a second order autoregressive 

process given by 

W{t) = 1.975 W{t-I) - 0.977 W{t-2) + .003 w{t) 

w{t) = i.i.d. normal (0,1) 

(69) 

(70) 

The parameters of this process were experimentally determined before taking 

tracking data to provide a realistic and unpredictable tracking signal to 

the pilots. 

The JIR pilot model was identified using the NPD algorithm set up to 

provide . the special case of the multi-channel Maximum Entropy Spectral 
12 . 

Estimation algorithm • The PAC order selection rule of Equation (65) con-

sistently resulted in M=4 in Equation (13) except for the three-channel 

Configuration 3 where the order was M=7. Figure 3 illustrates the behavior 

of the PAC selection rule versus order for this case. 

A typical experimental versus identified-model time history for the 

rudder deflection signal is shown in Figure 4 for -models identified from 

100, 200, and 500 points. The 100 point model used every fourth point of 

the data set between points 1 and 400; the 200 point model used every other 

point between points 1 and 400. Thus the final five seconds of the time 

history shows actual and predicted time histories which are independent of 

the modeling process. The 500 point model shows the best visual agreement 

between actual and predicted time histories. 

The.top row of the "normal equations" from Equation (33) may be used 

to define the predicted autocorrelation matrix as a function of lag for the 

identified JIR. With aileron deflection and aileron error as channels 1 and 

2, respectively, the actual versus predicted autocorrelation matrix is 

shown in Figure 5 for the two-channel Configuration 3 , . where the actual 
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value was estimated from the data sets using 

R (k) = E X(t)XT(t-k) xx (71 ) 

The normalized residual matrix from Equations (63) and (66) is shown 

in Figure 6. Normalization implies that each element is divided by the 

square root of the products' of the respective diagonal element magnitudes, 

or 

NORMALIZED (i, j) = ____ E_L_E_ME __ N..;.;T.;...:(:..;:;i..c., .aLj)~ __ _ (72) 

ELEMENT(i,i) ELEMENT(j,j) 
\ 

The prediction capability demonstrated in Figures 4 through 6 was typical 

for all identified models and was used as a validation check for all confi­

gurations. From these results it was assumed that the models passed the 

validation checks using experimental data. 

If a model passes a validation check, the relative power analysis 

described by Goto5 may be accomplished. The total power (variance) in the 

pilot's aileron deflection signal, computed from Equation (25), versus fre­

quency for each two-channel configuration may be seen in Figure 7. Note 

that the power spectral density peak magnitude, in general, increases for 

configurations with higher (worse) pilot rating. Thus there is an indica­

tion that pilot workload (as ·evidenced by power spectral density) increases 

across a portion of pilot bandwidth as pilot rating increases for different 

configurations. This is consistent with workload being correlated with 

deflection rate22 • 

Using Equation (26) it is possible to calculate the amount of power 

due to the noise source in each channel.. The noise contribution versus 

frequency for the aileron channel is shown in Figure 8 for the two-channel 

Configuration 3 (the other configurations showed similar results). Note 

that the command disturbance noise is the primary contributor to pilot 

aileron deflection at low frequencies (below 3 rad/sec) and pilot injected 

noise (remnant) is the primary contributor to pilot aileron deflection at 

the higher frequencies (above 6 rad/sec). The two-channel results are sum­

marized in Table 2 and the three-channel results are summarized in Table 3. 

As expected, the error variance, or element (2,2) in columns 2 and 5 of 
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Table 3, increases both with pilot rating and with the added workload of 

the three-channel task (as measured by the spectral density). 

For the three-channel case studies, the total power in the pilot's 

aileron deflection signal for each configuration is shown i~ Figure 9. As 

in the two-channel ease study, the power spectral density peak magnitude 

increases for configurations with the higher (worse) rating, suggesting a 

proportional increase in pilot workload. 

It is noted that the peak power tends to occur a~ the dutch roll fre­

quency for each configuration, indicating that this mode is clearly present 

if not dominant in the pilot's output. If this is the case this mode may 

be a contributing cause to the lateral PIO occurring for Configuration 3 

(refer to Table 1 for comments). 

The plots depicting noise contributions into the aileron and rudder 

deflection signals are shown in Figures 10 and 11. In addition to the 

large increase in peak spectral density of Configuration 3 over the other 

configurations, note that command disturbance noise is not dominant in the 

frequency range of maximum power as in the two-channel case (Figure 8). In 

the aileron deflection channel, pilot injected noise contribution exceeds 

the command disturbance noise contribution. This same trend is even more 

noticeable in the noise contribution plots for the rudder channel in Figure 

11, where the primary noise source is clearly pilot injected noise into the 

rudder channel. 

To summarize the data analysis of the identified models, there is evi­

dence that the cause of the PIO and resultant poor pilot rating is self­

induced coupling caused by rudder excitation of a dutch roll mode with 

level 3 flying qualities. Recall in the two-channel case study for Confi­

guration 3 that no lateral PIO occurred when the rudder input was denied 

the pilot. The command disturbance in each case was identically provided 

using Equation (69). 

The frequency response of the pilot model, obtained from the approxi­

mation of Equation (24), is shown for each configuration for the three­

channel cases in Figures 12 and 13. Note that for for poorly rated Confi-
I ~ 

guration 3 that pilot aileron deflection is out of phase at low frequencies 

with displayed bank angle error. 

As seen from the JIR analysis, the amount of information from the 

identification, validation, and analysis of models Obtained from actual 
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data sets is very large. Thus selectivity in analysis is essential, and 

the purpose of the modeling effort is paramount in this selection process. 

6. CONCLUSIONS 

The fundamental conclusion from this research effort is that time 

series models and the analytical analysis tools they provide have the abil­

ity to quantitatively evaluate pi10t-in-the-100p situations by displaying 

key relationships affecting the stability and response of a multi-channel 

"piloted" dynamic system. The NPD algorithm, in conjunction with the PAC 

selection rule, results in a parsimonious and stable multi-channel time 

series JIR model. This representation is unique if the existence condi­

tions of Theorems 1 and 2 are met. Experimentally this requires sufficient 

and random-appearing excitation, physical delays in each path, and data 

realization sets which are stable. 

Analysis of case studies illustrated the application of the modeling 

process, and demonstrated how the dominant source of a lateral PIO may be 

identified using analysis tools presented in this paper. It is important 

to remember that the case study results were primarily intended to illus­

trate the "application" of the identification process as opposed to a 

comprehensive evaluation of particular vehicle configurations. 

It is recommended that the joint innovations identification process be 

applied to a more varied data base, including actual flight test data and 

flight control system variations. Multi-channel applications which study 

manual control response of operators in training status may also be accom­

plished. 

7. ACKNOWLEDGMENT 

The authors express their gratitude to Mr. Yuan Pin-Jar and to Capt 

William Smith, USAF, who are responsible for the laboratory computer pro­

grams and display setup used in the simulations, and to Mr. Chuck Ma1msten 

for assistance in computer operat::ion, maintenance, and data retrieval. 

This research was partially supported by NASA Dryden Flight Research 

Facility/Ames Research Center under grant no. NAG4-1. This support is 

appreciated. 

18 



8. APPENDIX 

PROOF OF THEOREM 1. From Equation (10) we have 

-1 

X(t) = I - G(M,z) n(z)p(t) (A.I) 

First the unique mapping between Equations (A.I) and (13) and (18) 
will be given, then the uniqueness conditions for the identified r(z) will 
be derived. Referring to Figure 1 and temporarily eliminating notation for 
arguments let 

Expand the subsystem blocks in Equation (18) to obtain 

r ll (~) 
X(t) = r21 (z) 

r
3I (z) 

r1Z(z) 
r22(z) 

r
32

(z) 

f 13 (z) 

f 23 (z) 

f 33 (z) 

pet) 

(A.2) 

(A.3) 

(A.4) 

(A.S) 

Use direct substitution from Equation (A.I) and match entries with 
Equation (A.5) to obtain 

Since nii are non-singular prewhitening filters, Ki 
~ (w) singular from Equation (22). The reverse mapping xx 

(A.6) 

(A.7) 

(A.8) 

(A.9) 

(A.IO) 
(A.ll ) 

(A.I2) 

(A.I3) 

(A.I4 ) 

singular implies 
is provided by the 

recursive relations in Equations (16) through (17). Note that if only two 
subsystems are present that Equations (A.6) through (A.14) yield the same 
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10 S relationships given by Anderson and Goto • 

The final step in 

will be done using 

Anderson10 : 

the proof is to show the uniqueness of fez) and this 

the following result from Popov as communicated by 

For a nonsingular 

there exists D(z) such that 

and there exists 

~ (z) xx * = ~ (z) xx 

* D (z)D('z) = ~ (z) 
xx 

~ (w) 
xx = If(Z) ~ P(O)f*(z)1 z = 

with r(z) and P(O) unique 

jw~ e 

r(z="') = I . and P(O) > 0 

(A.IS) 

(A.16) 

(A.I7) 

(A.I8) 

(A.I9) 

To apply this result to the JAR use the condition that there is a delay in 

every path, thus 

= 0 z= ... 

= 0 z= ... 

(A.20) 

(A.2I) 

Substituting Equation (A.20) into Equations (A.6) through (A.I4), and sub­

stituting Equation (A.21) into Equations (11) and (12), we obtain 

I r I -0 ij z="'-

= I z= ... 

20 
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(A.23) 



I n I - I ii z=co - (A.24) 

Thus Equation (A.19) is satisfied for the JAR. By the i.i.d. properties 

of p(t), P(O) is positive definite; and by the propertie~ of a Toeplitz 

Autocorrelationl7matrix 

satisfying Equation (A.15). Therefore Popov's result applies and r(z) and 
10 P(O) are unique. Note that Anderson has also shown that the block diago-

nals of r if (z) must be nonsingular. 

PROOF OF THEOREM 2. To prove that the joint process must be full rank 

for unique identification use Equation (28) 

z=e j wA 

together with 

z=l 

If X(t) is less than full rank then a singular P(O) is implied. A singular 

P(O) makes one or more blocks of r(z) arbitrary. 

To prove the unique factorization is a necessary condition for unique 

identification use Equation (22) and the fact that P(O) is positive defin-
23 ite. Then there is a unitary· transformation such that for some diagonal 

Il(O) 

P(O) = UIl(O)UT Il(O) > 0 (A.25) 

Therefore 

(A.26) 

If p(O) is not diagonal, then the identified r(z) is 

r(z) = r(z) U (A.27) 

where unitary matrix 'to" depends on the correlation in P(O), and thus may 

not be unique. If P(O), however, is diagonal then P(O). =. Il(O), U = I, and 
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lim r 
M,N+oo 

r(z) U = r(z) (A.28) 

Thus if the unitary matrix "U" is identity then a sufficient condition 

exists for the factorization to be unique. The "physically realizable" 
• 10 normalized minimum ~hase stable factor results as defined by Anderson • 
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N 
.p.. 

Configuration 
(Level) 

1: two-ch 

Tabl e I. Three-channel case study configurations 

Dutch Roll 
Parameters 

F; I WN 

0.4 I 2.02 

PR 

2 

Comments 

"Responsive and predictable" 

----------------~-----~-------t----~------------------ ------------------------------

1: three-ch 

2: two-ch 

2: three-ch 

3: two-ch 

4 ilSome coupl ing from rudder in to aileron axis, 
but mostly well behaved" 

0.) I 2.02 1 4-51 "Some oscillations and overshoots when 
aggressive" 

--~~-~--~~---~--;-l--:~::~~:~-:::~:~::~:-~:~:::~-~:~~:~-:~:-:~~:~:~j 

.02 I 4.0* 6 

and bank angle when aggressive; unpredictable 
and oscillatory bank angle made worse when 
aggressive on rudder." 

"Overshoots and residual oscillations;" 
"unpredictable;" complex aileron inputs 
requi red for control II 

________________ ~-----~-------~----M------------------_____________________________ _ 
3: three-ch 9 "elosed 1 oop unstabl e for task; II "excess ive 

lateral PIO." 

*This is the frequency of the lateral PIO 



N 
VI 

- Configurati on 
(Level) 

1 

2 

3 

T~bl e-z.· Two-channel case studyresul ts summary 

Cross I 

Cova riance Maximum 
Bank Angle Bank Angle PSD Value 

PR Error Ail. Def. to Aileron of Ail eron 
_ Variance Va riance Deflection Deflection 

deg 2 deg2 ·2 deg deg2/rad/sec 
--

2 20.9 5.3 8.2 2.2 I 

4-5 32.1 6.6 11.4 2.9 

6 77 .1 11.4 20.8 3.8 I 

I 

: I 



Table 3 Covariance matrix summary and comparison 
2-ch 

Covariance * Pilot Th ree-channe 1 Configuration Matrix Order Rating Cova riaf"):e Ma tri x Rxx (0) Normalized P(O) Matrix (Level) Rxx(O) M PR [equation (4.43)J [equation (4.44)J 

°a ea or· °a ea or 
°a ea 

r-:. 
8.83 - --4.93, 8.55, 1.0, -0.10, 0.15 

~'3. 8'J 1 4 4 8.55, 53.44, 23.96 -0.10, 1.0 0.08 8.2, 20.9 
~.83, 23.96, 25.0_ L.... 0.15, 0.08, 1.0_ 

°a ea °a ea or 
r. 19.71, ~-24.3 , 22.46 r-

1. ° , --0.11, 0.15 [6,6. ll'J 2 4 7 24.3 , 138.1 , 43.87 0.11, 1.0 , 0.11 11.4, 32.1 
L-22 .46, 43.87, 34.17_ ,-0.15, 0.11, 1.0 _ 

°a ea °a ea or 
r-. 

15.62, 8.21- '-1. ° - .19 , .Ol}-11.69, 
~1.4. 20'J 3 7 9 15.62, 541.1 , 41.78 . - .19 , 1.0 , .011 20.8, 77.1 

L.... 8.21, 41. 78, 30.5 _ 
'-

.017 , .011, 1.0 _ 

*order obtained for PAC selection rule 

I 
I 

I 
I 
I 
I 

\0 
N 



Figure 1 Multi-channel piloted closed-loop system model 

Figure 2 Multi-channel lateral axis tracking display 

Figure 3 Order selection rule 

Figure 4 Rudder channel actual vs. model output: 3-ch case 
study configuration 3 

Figure 5 Autocorrelation matrix vs. lag: 2-ch case study 
configuration 3 

Figure 6 Residual autocorrelation matrix vs, lag: 2-ch case 
study configuration 3 

Figure 7 Totalai1eron deflection power: 2-ch case study 

Figure 8 Noise contribution to aileron deflection PSC: 2-ch 
case study configuration 3 

Figure 9 Total aileron deflection power: 3-ch case study 

Figure 10 Noise contribution to aileron deflection PSD: 3-ch 
case study configuration 3 

Figure 11 ~oise contribution to rudder deflection PSD: 3-ch 
case study configuration 3 

Figure 12 Frequency response magnitude °a/ea: 3-ch case study 

Figure 13 Frequency response phase 0a/ea: 3-ch case study 
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