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A time-series technique is presented for identifying the
dynamic characteristics of the human operator in manual control
tasks from relatively short records of experimental data. Con- v
trol of system excitation signals used in the identification is |
not required. The approach is a multi-channel identification
technique for modeling multi*input/multi-output situations.
The method presented includes statistical tests for .validity,
is designed for digital computation, and yields estimates for

the frequency responses of the human operator. A comprethsive

relative power analysis may also be performed for validated"
models. This method is applied to several sets of experimental
data, the results are discussed and shown to compare favorably

with previous research findings.‘ New results are also

presented for a multi-input task that has not been previously
modeled to. demoustrate the strengths of the method. ’

NOMENCLATURE
channel one of the physical variables used to describe system‘

behavior in the time domain (observed state)
e(t) vehicle subsystem output vector at time "t"

f(t) manual control vector at time "t" for pilot subsystemh
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#* Professor
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G(z) discrete transfer function matrix
G, (z) transfer function matrix relating

subsystems "i'" and "j"

GM,k p;edictor matrix‘at lag‘"k", k <M

G(M,z) z Oy i 2 K

13,k e;ement 1,j in GM;R

M,z) kZIGij K 2 k

i.i.d. independent and identically distributed random variables
k index for lag -
M maximum order for model
m current order:in identification process
N number of vector samples
n number of channels
T matrix transpose (* conJugate transpose)
T(m) Toeplitz autocorrelation matrix for order "m" process
X(t) joint process vector

z_1 backWard shift operator - , ,

s(t) control surface command vector at time "t" -
A uniform sanple interval in seconds

w frequency (rad per sec)

1. INTRODUCTION |
A pilot model is a mathematical expression which balances simplicity

of mathematical structure with observed empirical reality according to the
purpose for which it is used. A key question always facing the aviation
community has been how to develop and use these models in order to specify,
design, and evaluate piloted systems1 so that they provide efficient, pro-
ven performance while admitting the pilot "symbiotically" into the control
loopz. The successes of describing function and optimal control models in
meeting this objective are well known3! but the identification of these
models is hindered by an dependence on long data records, a priori parame-
ter knowledge, and a precisely controlled experimental environment.

A time series approach to pilot modeling, introduced ten years ago ,
initially appeared as just another "technique"; but recent applications of

time series analysis to complex multi-channel tasks5 indicate that this



approach may work well on relatively short data records with little or no a
priori parameter knowledge. Moreover, the process of modeling provides a
unifying mathematical "framework" relating recent research in closedr+loop
multi-channel identification theory to actual laboratory . or flight test
data records of relatively short duration. The "framework" includes estab-
lishing model existence, applying a proven identification technique, vali-
dating the resulting model,  and ‘analyzing model properties relative to
model purpose.

Early researchers using time series to model manual control behavior
recognized that obtaining single or multi-channel pilot models is a doubly
formidable task because of the adaptive nature of the pilot and because of
the inherent loop closures in the overall system6. Shinners4 and Agarwa17,
in their pioneering work for single-input single-output (dual—channel) sys—
tems, found that simple discrete transfer functions adequately described
pilot manual control output in compensatory and pursuit tasks but did not
consider the theoretical question of model existence or stability. The
work of Goto, based on the theoretical methods of Akaike8 ‘and Whittleg,
considered model "existence" questions for a two subsystem closed-loop
structurelo, but these methods assume that the autocorrelation statistics
for the process are known a priori. _

The purpose of this paper is to provide a unifying framework for time
series modeling by deriving the specific theoretical and experimental con=—
ditions required for model existence and uniqueness, to apply an identifi-
cation algorithm which guarantees stability and does not require a priori
statistical information, and to demonstrate the application of this iden-
tification process in case studies. The derivation of existence conditions
is applicable to a three subsystem closed-loop structure which contains thek
two subsystem results of Goto as a special case. The derived identifica-
tion algorithm is called "Normalized Predictive Deconvolution", NPD, and is
a generalization of the Levinson-Wiggins—Robinson algorithm11 and the

multi- channel Maximum Entropy Spectral Estimation algorithmlz.

2. THE MODEL
The pilot-as—controller discrete linear model is shown as part of a

three subsystem structure in Figure 1. The double lines represent vector



precesses from three subsystems: the vehicle, the pilot, and the flight
control system. Autoregressive (Markov) noise is added to each subsystem
to represent a physical disturbance13; that is, injected noise is a 1linear
sum of past values plus an i.i.d. discrete "shock" or "pulse'". Mathemati-

. cally this represemtation may be concisely represented by

X(t) = 6(z)X(t) + ¥(t) (1)

where X(t) is a joint process vector partitioned into subsystems as
T T
X(t) = [£7(e),67(e),e"(e) (2)

G(z) is a matrix of transfer functions in terms of the shift operator "z"

which may also be partitioned into a general form given by

0 6;,(z) G13(Z)=Gp(z)
G(z) = G21(z)=Gf(z) 0 G23(z) 3
G31(Z) G32(z)=Ga(Z) 0

The injected noise, ¥ (t), is assumed both autoregressive of finite order
"L" and uncorrelated between subsystems. Thus, it may be represented by
the block diagonal form

¥(t) = C(L,2)¥(t) + p(t) )]
L
-k
I C 2 0 0
rmp 1Lk
) ; &
c(L,z) = 0 rC z 0 (5)
oy 22,k
L
-k
0 0 t C z
g 33,k
w(t) = [RY(e) , V() , Wh(t) (6)



o(t) = [rT(t) , vi(t) , W (t) i.i.d. e

The individual elements in Equation (3), in contrast to the finite
order assumption for the noise representation, are expressible either as a
ratio of discrete polynomials (transfer function) or as an  infinite
sequence in the delay operator z—1 (pulse response). Thus, between subsys-

tems "i" and "j",

o

_ &
Gij(Z) = kilcij’k z . (8)

If the infinite sequence of Equation (8) is truncated at order "M", an
approximation to the mathematical system of Equation (1) results which will
be referred to as the joint autoregressive representation (JAR). The trun-
cated elements of G(z) are given by

M &

Gij(M’z)'= kilcij’k z JAR 9)

By combining Equations (1), (4), and (9) the JAR may be written as

X(t) = 6G(M,z) X(t) + Q(z) p(t) (10)
alz) = | 1-c@,z2) 11y
L X (
c,.(L,z) 1 C 12)
{1\ 0% o1 1L,k z | R

The joint innovations representationlé, JIR, is obtainéd by multiply-

ing Equation (10) by Equation (11) and solving for X(t):

X(t) = A(M,z) X(t) + p(t) (13)
M S ‘ ;

AM,z) = DAL 27X lc@,z) + 6(M,2) - C(L,2)G(M,z) (14)
k=1 kT 1T | | |

The block diagonal form of Equations‘(Z) and (5) .is now takem into
account 1in the relationship between the JAR and JIR. Denoting each
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subsystem of X(t) by subscript "i", Equations (13) and (14) are equivalent

to

3
L

Xi(t) = Cii(L,z) Xi(t) + &

By comparing Equations (14) and (15) one obtains

€y (L,2) = AL (L,2)

Gij(M’z) = Cii(L’z) G, .(M,z) + A, . (M,z) ; 1 # j

i3] 13

The JIR described by Equation (13) may also be'put into the form -

X(t) = r(M,z) p(t)

M & -1
I - I A“ z
k=1 Wk

r(M,z) =

The autocovariance matrix is found by post multiplying Equation

by the transpose of X(t) and taking the expected value:

Rxx(o) = E

X(t)XT(t)| = I'(M,z) P(0) I (M,z)

where

P(0) = Elp(t) pT(t)I |

The power spectral density of this process5 is

8 _(w) = |T(M,2) & PCOII"(1t,2)

z = o398

which has the property
s B
d (z) =¢_(z ") =29 (z)

An approximation to the frequency response between variables '"i"

may be found using

Gij(w) = ,Gij(M’z) L = s

I- Cii(L’z) Gij(M’z) Xj(t) + pi(t) (15)

. (16)

(17)

(18)

(19)

(18)
(20)

(21)

(22)

(23)

" j"

(24)



If P(0) is diagonal, the relative power in state "i" is defined as

n *
;Z' Iyy(w) & P (O)I‘ij(w) (25)

P, .(w) =
s 3
and the noise power contribution to channel "i" from the noise source: in

channel "j" is

SO * 1.0
qij(w) rij(w) a ij(o)rijﬂ@)gzzz;; (26)

Thus it is shown how the JIR representation of Equation (13) may be
transformed into the JAR representation of Equations (9) through (12) using
the recursions of Equations (16) and (17). Once validated, the properties
of the identified model may be analyzed using Equations (20) through (26).
There must be assurance, however, that these model representations exist in

theory, and this topic is addressed in the next section.

3. THE EXISTENCE QUESTION
The primary factors in the determination of an acceptable pilot model

are suitable experimental conditions, the assumed model structure, and the
identification technique. Since the harm done by a faulty experiment, simu-
lation, or flight test permanently voids the data, the conditions required
for a unique and valid model are very important.

- THEOREM 1: The JIR of Eqn.(18) is unique, and there is a unique map-
ping  between the JAR of Eqn. (10) and the JIR of Eqn.(13) prdviding
Eqn.(23) holds for the spectral density and providing there is a delay in
every path of Figure 1.

For proof see the Appendix. ,
THEOREM 2: Given that the transfer matrix T(z) has been didentified

from realization set {X(t)| t<N } generated by TI'(z), necessary conditions
for

lim (z)=T(z) ‘ - (27)
M, N+ ‘ '
are :

(1) The joint process X(t) is full rank



(2) There is a unique factorization

1/2 /

el (28)

@xx(w) = [T(z)UA z=ej

A>0 and U Unitary ’ (29)
For proof see the Appendix.

The practical implications of these theorems for flight simuiations
and flight tests are that sufficient noise sources be used to excite the
vector process X(t), that there should be no feedforward paths which
violate the requirement for a delay in each loop, and that no anticipatory
loops are closed by the pilot for the same reason. Although some identifi-
cation schemes allow correlated noise inputsls, there is no way to distin-
guish them from feedforwards and/or anticipation. If wvalidation tests,
however, indicate a positive definite and diagonal autocorrelation matrix
for the noise inputs, then there 1s evidence that a sufficient condition

has been met for uniqueness.

To summarize, the design or test engineer should assure
(1) sufficient noise excitation in measured channels;

(2) pilot anticipation negligible (implies random or random "appearing
inputs;, | .

(3) physical delays exist in each channel, including feedforward which are

significant relative to sample time;
(4) data realizations are not predominantly unstable or nonstationary;

(5) .validation checks include a whiteness test for the estimated noise

realizations.

ﬁ, MODEL IDENTIFICATION AND VALIDATION

Given the conditions are met for model existence, an identification
scheme is desired which identifies the JIR of Equation (13) from data real-
ization set {X(t)| t<N }. It is especially important that the scheme be

stable (identified parameters are bounded) and not be dependent on a priori

knowledge of autocorrelation statistics. The idenfification technique



presented here 1s called Normalized Predictive Deconvolution (NPD), which
acts directly on the data sets and results in a stable and parsimonious
JIR.

The basic principle of the NPD. scheme follows that established by Wig-

11

gins and Robinsor = who generalized Burg's16 recursion for single—channel

systems by hypothesizing a set of backward predictors given by

X(t) = B(M,z) X(th+p’(t) (30)
.\ .
k
B(M,z) = leM K ? o (31)
pr(t) = {r'T(®) , vy, v, B €

By post multiplying Equation (13) by XT(t—k) and Equation (30) by
XT(t+k) » taking expected value, and expressing the result in a block 7

matrix form, the "normal equations" of Reference (17) result:

m, 1 m,m~1 m,m{
H _ ’ H T(m) = (33)
_Bm’m —Bm,m-l se e Bm’ 1 I 0 | ‘e e QB(m)
where
Rxx(o) cee Rxx(m)
T(m) = | : ::: : o (34)
Rxx(-m) see Rxx(o)

R_(=K) (35)

Qp(m) =R __(0)- E A m,k

k=1

Y ! : m
QB(m) = Rxx(O)- LB

A R (K (36)

m,k

In the NPD scheme the solution to the '"normal equations" 1is recur—
sively generated as order "m" is incremented without knowing the autocorre-

lation matrices a priori. The top and bottom rows of Eﬁuation (33) are each



weighted with invertible forward and backward prediction scaling matrices

SA(m) and SB(m) so that

= o1 . .
X 1T SA (m+l) A IR 0 < i< mtl ? (37)
~-X = s'l(m+1) (38)
m+l,0 A
..1 ‘
B V1,1 = SB (mt+l) B 1,1 0 <1 <mtl (39)
-5 = s-h ) (40)
m+l,0 B

To derive the forward recursion formula (the backward recursion fol-
lows analagously), the scaled bottom row of the "normal equations" is mul-
tiplied by an arbitrary but invertible matrix and added to the top row of
Equation (33). Next, the order is incremented from "m" to "m+l" and the

scaled results are expressed in the form

1 -K e -X Q (m'*'l) Y 0
w1, 1 wHmtl (g |F 1)
—Bm+1’m_'_1 —Bm+1.’m see I 0 LY QB(m+1)

By matching the terms of Equation (41) with the previously obtained 1linear

combination of rows the following recursion results:

L 57" (mH) ROILS i—s;l(m>eF(m+1)Q;1(m>sm’ g (42)
Qp(mtl) = 53 (mH) 8, () |qp(m) - sA<m)eF<m+1>Q;1(m>eB(m+1)' (43)
R sp () 8 (m) Buy - S;l(m)eB(m-i-l)Q;l(m)‘sA(m)Km’ rieg| (48

10



Qp(mtl) = S* S5(m) |Qy(m)-55 (m)ey (wt1)Q] " (m) e, (1)

(45)

where 0 € 1 < mtl in the above expressions, and where theyf&rward and back-

ward prediction error matrices are given by

ep(mtl) = R _(m+l)- r_lAm w1t R )

eB(m+1) R (-m- )= E B R ( -k)

k=1 m,mtl-k

By defining

p(mt+l) = S (m)e (m+1)S (m)

P (m+1) I - p(m+1)p (m+1)
PB(m+1) =I-p (m+1)p(m+1)
SA(m+1) = SA(m)—sF(m+1)S (m)e (1)
Sg(mtl) .= SB(m)~eB(m+1)S (m)e (mt1)

it may be shown using matrix algebra that

-1

1/ 2(m+1) = szl(‘m+1) S, (m)
‘ -1
L/ 2(mt1)| = 531 (mt1) 5. (m)
-1
Km+1,1 B 1/2(“'”) Bni ” p(m+1)S (m)Q (m)S (m)B_
-1
gm+l(,1 =[P 1/2(“‘*1) B, 1P (m+1)SA(m)QF (m)S(m)&

11

ymrtl-1

-]

(46)

(47)

(48)
(49)
(50)
(5D
(52)

(53)

(54)

(55)

(56)



If the scaling matrices of Equations (37) and (39) are chosen to be
the "identity" mafrix, then the classical Levinson-Wiggins-Robinson (LWR)
algorithm of Reference (11) results in a normalized form. If the scaling

matrices are chosen so that

-

-1 | |
syl = (ol %) - on
-1
szh@ = |ob/2(m) (58)

then Equation (48) defines the Partial Autocorrelation Coefficient (PAC)12

matrix. In addition, if the following approximations are used:

~1 ‘ -T
) = |2 2m)| R () |Rl 2| (59)
where
N T o
RF(m) = t=§+1iF(m’t) IF(M,t) (60)
N
RFB(m).= t=I§+1iF(m,t) IB(m,t-l) (61)
. N : :
RB(m) = t=£+IIB(m,t-1) IB(m,t-l) (62)
m
iF(m,t)=SA(m)IF(m,t) = X(t)-kzlAm’ X(t-k) (63)
m v :
iB(m,t)=SB(m)IB(m,t) = x(t)-klem,mﬁkx(t-k) (64)

then the multi-channel Maximum Entropy Spectral Estimation algorithm of
Reference (12) is obtained.

12



Morf, Vieira, and Kailath18 have shown that there is a one~to-one
correspondence between the PAC matrices defined above and the autocorrela-
tion matrices for a joint stationary process; moreover, they show that the
characterization theorem of stochastic processés assures PAC matrices with
singular values less that unity.

To determine the order '"M" at which the above recursion is stopped, a
variation of the multi-channel‘Akaike‘rulelg, as modified by the recommen-
dations of Kashyapzo, is presented here as the PAC selection criterion.
This criterion assumes that, as the estimates for the PAC matrix elements
becomes smaller, they become more random, thus causing the determinant to
also become random. To balance this effect with a term sensitive to both

order "m" and number of channels "n" » the following expression was chosen

as the PAC selection rule.

J (m) = N log |det p(m)| + m(n)? log N - (65)

The order resulting in the "first" minimum value as order 'm" is incre-

mented is chosen for the JIR. ‘
Validation is accomplished by testing the forward innovations for
whiteness. These residuals are estimated using Equation (62) and the

matrix set

E iF(M,t)i;(M,‘t-k)

s t<N ; 0<k (66)

which is visually tested for whiteness over a reasonable number of  1lags
"e",  Plots of JIR statistics vs actual statistics (if available) and time
histories of actual vs predicted JIR data may also be used.

Summarizing, a technique called Normalized Predictive Deconvolution
has been. presehted to identify a stable JIR of Equation (13) without a
priori knowlédgé of the process autocorrelation matrices shown in Equation

(34). The algoyithm is initialized at m=0 with
Q5(0) = Q(0) = Rxx(o)

where Equations (60) and (63) are used to approximate R (0). The .scaling
matrices are then chosen, as in Equations (57) and (58) for example, then

13



by definition
-1

/2,0 o :
P,/ “(0) 5,(0) | (67)

-1

1/2 _ |
pi/2(0)| = 5.(0) (68)

and Equations (38) and (40) are used to.find Km’o‘and Bm,O'

The PAC matrix p(l) is then computed from Equations (59) through (64),
from - which PA(I) and PB(l) are found using Equations (49) and (50). The
new forward and backward predictors are determined from Equations (55) and
(56) for w=l and finally the value of the PAC selection rule using Equation
(65) is found. If desired the order is incremented and the process
repeéted.

Once the JIR is identified the JAR may‘be determined using Equations
(16) and (17). The model characteristics are then calculated using Equa-
tions (22) through (26). Case studies which demonstrate the application of

this identificétion process and analysis are presented next.

3. MODEL ANALYSIS: CASE STUDIES

In order to demonstrate the application of the JIR identification pro-
cess on actual data sets a multi-channel "piioted" simulation was accom—
plished in the Flight Simulation Laboratory at Purdue University. Three
pilots performed lateral bank angle tracking tasks using éilerpn deflection
inputs with and without rudder deflection inputs for assistance.

In addition to obtaining the data sets, the goal of the simulation was
to obtain subjective pilot ratings and comments for three vehicle éonfi—
gurations. The configurations were representative of large aircraft with
the dutch roll modes selected to yield level 1, 2, or 3 handling'quaiities
as currently in military specificationSZI. Table 1 summarizés‘.the dutch
roll characteristics and the corresponding pilot ratings and comments
obtained during the simulation. Approximately 25 seconds (500 poiﬁts at a
20 Hz sample rate) were used for modeling from each data run which was typ-
ically 60 seconds long. "

14



The pursuilt display shown to the pilot for the three-channel simula-
tion (channels were aileron error, aileron deflection, and rudder deflec-
tion) is shown in Figure 2. For the two—-channel simulation the "ball in
the window" portion of the display was masked and no rudder inputs were
allowed;' Note from the ratings and comments in Table 1 that there 1s a
considerable degradation for each configuration between the two-channel and
the three-channel cases. This degradation is most severe for the level 3
configuration where a lateral pilot induced oscillation (PIO) resulted when
the pilots were allowed to use rudder inputs.

The commanded bank angle disturbance was a second order autoregressive

process given by

W(t) = 1.975 W(t-1) - 0,977 w(t-2) + .003 w(t) (69)
w(t) = i.i.d. normal (0,1) (70)

The parameters of this process were experimentally determined before taking
tracking data to provide a realistic and unpredictable tracking signal to
the pilots.

The JIR pilot model was identified using the NPD algorithm set up to
provide . the special case of the multi-channel Maximum Entropy Spectral
Estimation algorithmlz. The PAC order selection rule of Equation (65) con-
sistently resulted in M=4 in Equation (13) except for the three-channel
Configuration 3 where the order was M=7. Figure 3 illustrates the behavior
of the PAC selection rule versus order for this case.

A typlcal experimental versus identified-model time history for the
rudder deflection signal 1s shown in Figure 4 for models identified from
100, 200, and 500 points. The 100 point model used every fourth point of
the data set between points 1 anq 400; the 200 point model used every other
point between points 1 and 400. Thus the final five seconds of the time
history shows actual and predicted time histories which are independent of
the modeling process. The 500 point model shows the best visual agreement
between actual and predicted time histories. '

The top row of the ''mormal equations" from Equation (33) may be wused
to define the predicted autocorrelation matrix as a function of lag for the
identified JIR. With aileron deflection and aileron error as channels 1 and
2, respectively, the actual versus predicted autocorrelation matrix is

shown in Figure 5 for the two-channel Configuration 3 , - where the actual

15



value was estimated from the data sets using

R_ (k) = E[X(£)X (t=k) (71)

The normalized residual matrix from Equations (63) and (66) is shown
in Figure 6. Normalization implies that each element is divided by the
square root of the products of the respective diagonal element magnitudes,

or

ELEMENT(1, §)

NORMALIZED({1, j) = (72)

ELEMENT(1,1)

ELEMENT(j,j)[

The prediction capabilify demonstrated in Figures 4 through 6 was typical
for all identified models and was used as a validation check for all confi-
gurations. From these results it was assumed that the models passed the
validation checks using experimental data.

If a model passes a validation check, the relative power analysis
described by Goto5 may be accomplished. The total power (variance) in the
pilot’s aileron deflection signal, computed from Equation (25), versus fre—
quency for each two-channel configuration may be seen in Figure 7. Note
that the power spectral density peak magnitude, in general, increases for
configurations with higher (worse) pilot rating. Thus there is an indica-
tion that pilot workload (as .evidenced by power spectral density) increases
across a portion of pilot bandwidth as pilot rating increases for different
configurations. This is consistent with workload being correlated with
deflection ratezz.

- Using Equation (26) it is possible to calculate the amount of power
due. to the noise source in each channel. The noise contribution versus
frequency for the aileron channel is shown in Figure 8 for the two-channel
Configuration 3 (the other configurations showed similar results). Note
that the command disturbance noise is the primary contributor to pilot
aileron deflection at low frequencies (below 3 rad/sec) and pilot injected
noise (remnant) is the primary contributor to pilot aileron deflection at
the higher frequencies (above 6 rad/sec). The two-channel results are sum-—
marized in Table 2 and the three-channel results are summarized in Table 3.

As expected, the error variance, or element (2,2) in columns 2 and 5 of

16



Table 3, increases both with pilot rating and with the added workload of
the three—channel task (as measured by the spectral density).

For the three-channel case studies, the total power in the pilot’s
aileron deflection signal for each configuration is shown in Figure 9. As
in the two-channel ease study, the power spectral density peak magnitude
increases for configurations with the higher (worse) rating, suggesting a
proportional increase in pilot workload.

It is noted that the peak power tends to occur at the dutch roll fre-
quency for each configuration, indicating that this mode 1is clearly present
if not dominant in the pilot’s output. If this is the case this mode may
be a contributing cause to the lateral PIO océﬁrring for Configuration 3
(refer to Table 1 for comments).

The plots depicting noise contributions into the aileron and rudder
deflection signals are shown in Figures 10 and 11. In addition to the
large increase in peak spectral density of Configuration 3 over the other
configurations, note that command disturbance noise 1s not dominant in the
frequency range of maximum power as in the two—-channel case (Figure 8). 1In
the afleron deflection channel, pilot injected noise contribution exceeds
the command disturbance noise contribution. This same trend is even more
noticeable in the noise contribution plots for the rudder channel in Figure
11, where the primary noise source is clearly pilot injected noise into the
rudder channel.

To summarize the data analysis of the identified models, there is evi-
dence that the cause of the PIO and resultant poor pilot rating is self-
induced coupling caused by rudder excitation of a dutch roll mode with
level 3 flying qualities{ Recall in the two-channel case study for Confi-
guration 3 that no lateral PIO occurred when the rudder input was denied
the pilot. The command disturbance in each case was identically provided
using Equation (69). '

The frequency response of the pilot model, obtained from the approxi-
mation of Equation (24), is shown for each configuration for the three-
channel cases in Figures 12 and 13. Note that for for poorly rated Confi-
guration 3 that ﬁilot aileron deflection is out of phase at low frequencies
with displayed bank angle error.

As seen from the JIR analysis, the amount of information from the

identification, wvalidation, and analysis of models obtained from actual
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data sets is very large. Thus selectivity in analysis 1is essential, and

the purpose of the modeling effort is paramount in this selection process.

6. CONCLUSiONS

The fundamental conclusion from this research effopt is that time
series models and the analytical analysis tools they provide have the abil-
ity to quantitatively evaluate pilot-in-—the-loop situations by displaying
key relationships affecting the stability and response of a multi-channel
"piloted" dynamic system. The NPD algorithm, in conjunction with the PAC
selection rule, results in a parsimonious and stable milti-channel time
series JIR model. This representation is unique if the existence condi-
tions of Theorems 1 and 2 are met. Experimentally this requires sufficient
and random-appearing excitation, physical delays in each path, and data
realization sets which are stable.

Analysis of case studies illustrated the application of the modeling
process, and demonstrated how the dominant source of a lateral PIO may‘be
identified using analysis tools presented in this paper. It is important
to remember that the case study results were primarily intended to 1llus-
trate the "application” of the identification process as opposed to a
comprehensive'evaluation of particular vehicle configurations.

It is recommended that the joint innovations identification process be
applied to a more varied data base, including actual flight test data and
flight control system variations. Multi-channel applications which study

manual control response of operators in training status may also be accom-

plished.
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8. APPENDIX .
PROOF OF THEOREM 1. From Equation (10) we have
-1 ,
2(z)p(t) (A.1)

X(t) = II - G(M,z)

First the unique mapping between Equations (A.1) and (13) and (18)
will be given, then the uniqueness conditions for the identified r(z) wilii
be derived. Referring to Figure 1 and temporarily eliminating notation for

arguments let

K, = (1 - GpGaGf) (A.2)
K, = (I - GprGa) , (A.3)
Ky = (1 - GaGpr) : - (AJL)

Expand the subsystem blocks in Equation (18) to obtain

f®) Tyz) 1)
X(t) = Ty, (2) Tyy(2) Tos(z)| p(t) (A.5)
P31(z) P32(z) P33(z)

Use direct substitution from Equation (A.1) and match entries with
Equation (A.5) to obtain

'P11 _fI 9, (A.6)
r, = K1_fpca922 (A.7)
ryq = KlleQ33 (A.8)
Tor = Kz_ffﬂll (A.9)
Ty, = K5 1y, (A.10)
23 =YK21GprQ33 (A.11)
Ty K3-facfﬂll (A.12)
Ty, K3-fa922 (A.13)
Fyy = K3log, (A.14)

Since Qii are non-singular prewhitening filters, K1 singular implies
¢xx(m) singular from Equation (22). The reverse mapping is provided by the
recursive relations in Equations (16) through (17). Note that if only two
subsystems are present that Equations (A.6) through (A.14) yield the same
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relationships given by Anderson10 and Gotos.

The final step in the proof is to show the uniqueness of I'(z) and this

will be done using the following result from Popov as communicated by

Andersonloz

For a nonsingular -

*
¢ (2) = d>xx(2)
there exists D(z) such that

p*(z)D(z) = o_(2)

det

DIH > 0
z| =1
and there exists

I(z) A PO (z)

¢ (W) = .
with I'(z) and P(0) unique

F(z=eo) = 1 - and P(0)

- eij

>0

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

To apply this result to the JAR use the condition that there is a delay in

every path, thus

IGij

z=w

,Cii

z=w

Substituting Equation (A.20) into Equations (A.6) through (A.l14), and
stituting Equation (A.21) into Equations (11) and (12), we obtain

=0

I T13

z=o
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(A.20)

(A.21)

sub-

(A.22)

(A.23)



=1 (A.24)

Thus Equation (A.19) is satisfied for the JAR. By the 1.1.d. properties
of p(t), P(0) is positive definite; and by the properties of a Toeplitz

Autocorrelation17matr1x
*
¢ (2) =0 (2)

satisfying Equation (A.15). Therefore Popov’s result.applies and T'(z) ‘and
P(0) are unique. Note that Anderson10 has also shown that the block diago-
nals of Pii(z) must be nonsingular.

PROOF OF THEOREM 2. To prove that the joint process must be full rank
for unique identification use Equation (28)

6. = |r(z) a P(OYr(z)

XX

z=e J08

together with

R0 = B[RO ®)] = 1) 2 2Ot )

If X(t) is less than full rank then a singularvP(O) is implied. A singular
P(0) makes one or more blocks of I'(z) arbitrary.

To prove the unique factorization 1s a necessary condition for unique
identification use Equation (22) and the fact that P(O) is positive defin-

ite. Then there 1is a unitary‘transformation23 such that for some diagonal
A(O)

P(0) = UACOUT  ,  A0) >0 (A.25)

Therefore

¢ _(w) = |F(z)uan(0)ur"(2) s (A.26)

I1f P(0) is not diagonal, then the identified I'(z) is

P(z) = I'(z) U (A.27)

where unitary matrix "U" depends on the correlation in P(0), and thus may
not be unique. If P(0), however, is diagonal then P(0). = A(0), U = I, and
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lim T = r(z) U = r(z) (A.28)
M,N-)oo

Thus if the unitary matrix "U" is identity then a sufficient condition
exists for thé factorization to be unique. The "physically realizable"
normalized minimum phase stable factor results as defined by‘Andersonlo.
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Table

l. Three-channel case study configurations

Configuration | Dutch Roll
(Level) Parameters PR Comments
€ wy

1: two-ch 0.4 | 2.02 2 "Responsive and predictable"

1: three-ch -- -- 4 "Some coupling from rudder in to aileron axis,
but mostly well behaved"

2: two-ch 0.7 2.02 | 4-5| "Some oscillations and overshoots when
aggressive"

2: three-ch -- -- 7 "Coupled overshoots between rudder and aileron
and bank angle when aggressive; unpredictable
and oscillatory bank angle made worse when
aggressive on rudder."

3: two-ch 02| 4.0*% 6 “Overshoots and residual oscillations;"
"unpredictable;" complex aileron inputs

i required for control"

3: three-ch - - 9 "Closed Toop unstable for task;" "excessive

lateral PIO."

*This is the frequency of the lateral PIO
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Table 2 - Two-channel case study‘resultsvsummary

Cross
Covariance Maximum

7 Bank Angle Bank Angle PSD Value
* Configuration| PR Error Ail. Def. | to Aileron of Aileron
(Level) . Variance Variance Deflection Deflection
deg2 deg2 ded2 ,deg?/rad/sec

1 2 20.9 5.3 8.2 2.2

2 4-5 32.1 6.6 11.4 2.9

3 6 77.1 11.4 20.8 3.8




Table 3 Covariance matrix summary and comparison

2-ch
Covariance * Pilot Three-channel
Configuration Matrix Order| Rating | CovarianceMatrix R «(0) Normalized P(0) Matrix
(Level) R, . (0) M PR : X .
XX [equation (4.43)] [equation (4.44)]
5. &y s, 5, e, 9.
S €a '
' 4.93, 8.55, 8.83 1.0, -0.10, 0.15
5.3, 8.2] :
1 [j :J 4 4 8.55, 53.44, 23.96 -0.10, 1.0 0.08
8.2, 20.9
8.83, 23.96, 25.0 0.15, o0.08, 1.0
Ga e, 6a ea 6r
19.71, 24.3 , 22.46 1.0 , 0.11, 0.15
6.6, 11.4
2 4 7 24.3 , 138.1 , 43.87 0.11, 1.0, 0.11
11.4, 32.1 '
22.46, 43.87, 34.17 0.15, 0.11, 1.0
§ e 8
Ga ea a a r
' 11.69, 15.62, 8.21 1.0 - .19, .017
11.4, 20.8
3 7 9 15.62, 541.1 , 41.78 | - .19, 1.0 , .o011
{;0.8, 77.;]
8.21, 41.78, 30.5 .017, .011, 1.0

*order obtained for PAC selection rule
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Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

10

11

12

13

vMu]ti—channe] piloted closed-Toop system model

Multi-channel lateral axis tracking display
Order selection rule

Rudder channel actual vs. model output: 3-ch case

- study configuration 3

Autocorrelation matrix vs. ]ag: 2-ch case study
configuration 3 :

" Residual autocorrelatijon matrix Vs, lag: 2-ch case

study configuration 3

-Total aileron deflection power: Zééh case study

Noise contribution to aileron deflection PSC: 2-ch
case study configuration 3

Totai'ai1eron deflection power: 3-ch case study

Noise contribution to aileron deflection PSD: 3-ch
case study configuration 3

Noise contribution to rudder def1ect1on PSD 3-ch
case study configuration 3

Frequency response magnitude Ga/ea: 3-ch case study

Frequency response phase da/ea: 3-ch case study
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R(t)

flight

control V(t)
system aircraft-task
| + 8(t)
= G.(2) > 6,(2)
Pilot

| | | é(t)
+7i+ Bpla)

pilot injected
noise vector



command
representation

controlled

element .-—cgﬁi;biféa_giement

. _bank angle (deg)

~
-

Bank Angle
Error {deg)

"race"

/\
"ball - 0.29 maximum
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