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Introduction

In this paper, we will propose a method for the identification of the

pilot's control compensation using time domain techniques. From this in-

formation we hope to infer a quadratic cost function, supported by the data,

that represents a reasonable expression for the pilot's control objective

in the task being performed, or an inferred piloting "strategy". (Note

here that we are using the term strategy as synonomous with control objective,

and not with control law.)

The ultimate goals of this research topic include a better understanding

of the fu^damental piloting techniques in complex tasks, such as landing

approach; the development of a metric measurable in simulations ane flight

test that correlate with subjective pilot opinion; and to further validate

pilot models and pilot-vehicle analysis methods. At this time we will present

the mpthndnlonv and some nreliriinar y numerical results.

The Pilot Model and Objective Function

The analyses relies on the well-known `I, optimal-control theoretic

technique for modeling the human pilot's manual control function. The

hypothesis upon which it is based is that the well trained, well motivated

pilot chooses his control inputs (e.g. stick force) to meet the pilot's

(internal) objective in the task, subject to his human limitations. His

objective is further assumed to be expressible in terms of a quadratic

"cost" function

Jp
 = E T-,- 

j. T ^Yp QYp + up	 + uRu p	 p Gu p, dt	 (0)
fo

where Y  = vector of pilot's observed variables (e.g., attitude, acceleration)

up = vector of pilot's control inputs

Q,R,G = Pilot-Selected (internal) weightings
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The human limitations modeled include information-acquisition and processing

time delay, observation and control input Errors, and neuromuscular dynamics.

A block diagram of the resulting model structure is shown in Figure 1.

the components of this model.may be grouped into two parts, one dealing

with the information acquisition and state estimation, and one related to

the control law or control policy operating on the estimated state. As has

been shown in the references on this modeling approach, the "solution" for

the pilot's control inputs, as predicted by the model, is expressed as

up=9Tx+gTup+vu

where x = internal estimate of the system state

gx , gu = control gains

vu = motor noise, or control input errors

(Readers unfamiliar with the further details of the model are referred to

the reference.)

The key points germain to this analysis are that the above equation is

a mathematical expression representing the pilot's overt control actions

(u p), and these control actions are measurable experimentally. Furthermore,

the gains g  and gu are functions of the plant (vehicle) dynamics and his

objective function, and thereby represent his control "techniques", level

of skiil, and familiarity with the vehicle dynamics.

Another factor of importance is that not only is the objective function,

from which the gains are determined, a mathematical part of a pilot control

model, but it's resulting magnitude obtained from exercising the model has

been found to correlate with the subjective pilot opinion obtained from

simulation and f l ight test. Such a correlation is shown in Figure 2, as an

example, taken from Refs. 2 and 3. This of course assumes one has been able

The human limitations modeled include information-acquisition and processing 
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Figure 2, Rating Correlation
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fact his strategy that depends on his perception of the task. Now this is

easy to do in simple laboratory tasks in which the subject has been instructed

to minimize some displayed error,. for example. But it is not at all clear

Just what flight parameters are being "regulated" or "tracked", other than

ILS glide slope and localizer error in the case of landing approach. This

is but one example, other complex piloting tasks might be considered equally

as well.

The Identification Procedure

We seek then a method by which we may identify those pilot parameters

that reflect his control techniques, or control strategy. Referring back

to the pilot model control law, or

up=gTi+gu up+vu

we note that the gains.gx operate on the estimated state x. Now the separation

principle of optimal estimation and control theory states that the control

gains (g 
X, 

gu ) are independent of the state estimation process. Further,

the optimal state estimator, in general and in the pilot model, is independent

of the overall objective function being minimized by the controller (estimator

and control) law. Therefore, if we are mainly after the pilot's control

strategy as expressed by, or at least a function of, his objective function,

we need only to focus on the gains (gx , gu ) and not on those variables related

only to the state estimator. These latter variables include the time delay,

and observation and motor noise covariance matrices, parameters of 'interest

in the identification technique of Levison [41, for example. If our approach

is successful, fewer parameters must be identified from the data, which is

always an advantage, but the parameters affecting the estimation process are

assumed.
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The identification method proposed is as follows. The control law

expressed previously, may be rewritten as

up C gx x - gx E + 
g u T up + vu

where E - error in estimating the true (actual) state x. Note that along

with the pilot's control up , these true states, such as angle of attack or

pitch attitude are measureable, but the state estimate, x, is a quantity

internal in to pilot, as modeled. Hence x is not measurable ---nor are

E or vu . Transposing the above, multiplying by x - col [x, u p,. and taking

expected values yields

E(xuT )	 E(xxT) ;'E(xuT )	 E(xET)_i_0-_	 gx
----e-	 _	 ------1----e-	 -	 -	 -

E(u uT)	 E(u xT E(u uT)	 E(u ET); 0gu
PP	 I. P	 PP	 P

E(xvU)

E(upVT)
u

or N • =M [!!] +N

u	 gu	 vu

Now to evaluate these matrices we note first that, in a simulation at

least, the vectors x(t) and up(t) are measurable, so estimates of their

covariance matrices (e.g., E(xx T))may be obtained from measurements of

sampled time histories. (Also, in this paper we assume that good estimates

of u p are available from filtered measurements of u p . The details of

accomplishing this filtering are under current investigation, but digital

techniques as well as analog methods are still available.) For reference,

(I)
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Now to evaluate these matrices we note first that, in a simulation at 

least, the vectors x{t) and up{t) are measurable, so estimates of their 

covariance matrices (e.g., E(xxT»)may be obtained from measurements of 

sampled time histories. (Also, in this paper we assume that good estimates 

of up are available from filtered measurements of u,,,' The details of 

accomplishing this filtering are under current investigation. but digital 

techniques as well as analog methods are still available.) For reference, 

refer to Figure 3. 
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With regard to the remaining terms involving E and v u , both are not

measurable and need attention. To resolve this consider the complete

system dynamics model by the relation

x =AX+Bup+w

and
•	 T	 T	 Tup = gxx - gx - + gu up + vu

where the relation between state and estimate, or x = x - E has been employed.

The pilot's internal state estimation error, E, is treated as follows. Define

Cu = u p - up to be the error in estimation of the pilot's own control input,

and then let

E = col j E, Eu1

Now the covariance of a may be shown to be governed by the relation

cov (e) = E(E ET) Q P

P = Al P + PAT+ W1

Also we have

A l E + E Al + W 1 - ECT Vyl CE = 0; E = coV (eKF)

and

Al= b-^-9-	 C	 pilot's observation matrix
u

Y = C x(t- z)	 + v
p	 u(t-z) 	 y

These relations are all obtained from Ref. ("5) and from the pilot model

equations given in Ref. (1). Here e KF is the Kalman filter estimation error

for the delayed state, - E the covariance of e KF , and

With regard tv the remaini,ng terws involving t and \lu' both are not 
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system dynamics model by the relation 

and 

. 
x • Ax + Bu + W 

P 

u • gTx _ T.,. + T + 
P x gx' 9u up "'u 

where the relation between state and estimate, or x • x - E has been employed. 

The pilot's internal state estimation error, E, is treated as follows. Define 
,.. 

EU • up - up to be the error in estimation of the pilot's own control input, 

and then let 

Now the covariance of ; may be shown to be governed by the relation 

cov (;) = E{££T) ~ p 

peAl P + PAr + WI 

Also we have 

and 

C c pilot's observation matrix 

Yp' C [:It;l] + Vy 

These relations are all obtained from Ref. (5) and from the pilot model 

equations given in Ref. (I). Here eKF is che Kalman filter estimation error 

for the delayed state, 'r the covariance of e
KF

, and 



W 1	 rW -^ Y-
u

Also W is tha covariance of the plant disturbance w, and V u and V  are

motor noise and rneasur(Aent noise. covariance, respectively, all assumed

known. Now the A equation may be integrated over the time delay 	 with

the initial condition on P from P(0) = r, the Kalman filter error covariance.

Now, since the predictor has the property that E(x E T) = 0, we have

E 1[!- - ] sT = E(E ET ) = P
u

So then the terms E(x E T) and E(upJ) are available from P, and these are

required to form M.

Finally;,it can be shown (Ref. (5)), pg. 331) that with the processes w and

vu uncorrelated we have in this case

E(xvT) = 0

E(upvu) = 'L Vu

Returning then to the estimation of the gains (equation I), we see that

all the terms in the matrices N V N 
	 and M may be calculated, either analytically
u

or from the measurements of x, u p (and u p ). The estimate for the gain

vector is then

gx	 1

gu est

	 [N6
	 u

Note finally that the matrix M is formed from two matrices

Mx - Mcor

where the Mcor and N  matrices may be thought of as corrections added to a
u

basic least-squares technique. The potential importance of these terms (Mcor

and N  ) will be demonstrated in an example later.
u
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required to form M. 

Ffnally,',it cail be shown (Ref. (5)), pg. 331) that with the processes wand 

v uncorrelated we have in this case u 

T E(xv ) = 0 
u 
T , 

E(u v ) • .;. V 
p U £ U 

Returning then to the estimation of the gains (equation I). we see that 

all the terms in the matrices Nu' N
v 

and M may be calculated, either analytically 
u 

or from the measurements of x, up (and Up). The estimate for the gain 

vector is then 

(II) 

Note finally that the matrix M is formed from two matrices 

M • M - M x cor 

where the Mcor and N matrices may be thought of as corrections added to a Vu 
basic least-squares technique. The potential importance of these terms (M 

cor 
and N ) will be demonstrated in an example later. Vu 



The algorithm is as follows:

1) Select noise covariance matrices, W. V u . and V 

2) Select a time delay T,neuromuscular time constant TN (or matrix

TN = g-l).

3) Form A
l 
and solve for Kalman Filter error covariance t.

4) So1Ve for covariance matrix P(T).and then the E(c E T) is available.

(Note, all these steps may be accomplished before or after the

experimental data is obtained.)

5) Per form experiment to obtain state and control (and control rate)

time histories.

6) From the time histories, obtain estimates for E(xxT). E(x.T),

E(u pup), E(xup) and E(u puP), or the matrices Mx and N^
T

7) Identify Mcor and NV in E(f e ) found in step 4.
u

8) Form M = Mx * Mcor and determing 9u	 from Equation II.
est

9) Check gu vs TN- 
1 

(selected in 2 above) and iterate (steps 2-8)

again as necessary. Note now that selecting TN affects the

solution for E and P(T), along with the effective 
Vu 

or

Vueff = T N 1 Vu(TN1,T

while selecting T only affects P(T) in the procedure.

Comparison to Classical Results

It is interesting to note that the "corrections" performed by including

Mcor and Nv are qualitatively related to an identification technique
u	 =

(discussed in Ref. 6, and elsewhere) used to determine the human describing

ia
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function in a compensatory task, which goes back to the development of the

"crossover model" of McGruer at al. Shown in Figure 4 is a schematic of this

situation, showing the clostd-loop tracking of some commanded e c . Measurements

may be taken of ec (t), E(t), u
p
 (t), and e(t) and manipulated in the frequency

domain to obtain frequency spectra

G1(jw) - Up(3w)/eC(3w)

G2(3w) - E(3w) /GC(3w)

G3( 3w) - Up(3w) /E(3w)

Now, in this model the pilot's control is considered to consist of

two part, one correlated with the input e c , the other uncorrelated with the

input. The latter component was defined to be "remnant." Mathematically,

up(3w) - Y p(3w) E(Jw) + r(3w) and r(Jw)/ec (34) -+ 0 in effect.

Block diagram maripulAtion leads then to the desired relation

YpOw) - G1(jw)/G2(3w)

rather than the simpler, and incorrect, expression Y p(3w) - G3(3w). This

was due to the presence of remnant r(jw) in the measured control input, and

the necessity to eliminate it's effect by defining it as the uncorrelated

component of up , and using this property. Comparir±g to our control law,

transformed just for d.scussion purposes, we have

up(3w) - gX x(3w) + gT up(3W) - gX E
(
3w ) + ^u(jw)

unmeasurable
separately

compared to

u (3w) - Y (3w) E ( jw ) + r(3w )
p	 p

unmeasurable
separately

K
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CLASSICAL RESULTS
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G3 ( c ) = Up(s)/E(s)

Figure 4
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The s-gnificant difference is that r(jw) was, in effect, discarded

in findi .ng Yp , but gTC is not uncorrelated with x or u p and must be accounted

fo in the identification problem.

A Numerical Example

To evaluate the numerical properties and the sensitivity to the a priori

selected parameters (Vy , W, Vu , r) a fast time simulation of the pilot model

equations has been assembled, and the simulated control task is shown in'

Figure 5 . As shown, the task is that of pursuit tracking with 11.7/s2

controlled element dynamics, and the displayed command signal is filtered

white noise with the filter transfer function given (ec(s)/w(s)). The

state vector is shown, the known gain vector to be identified is listed, and

the weig`+ts in the objective function used are given. A sample time history

of the state and simulated pilot's control input is depicted in Figure 6.

Such time histories were sampled at 10 msec intervals and the gains estimated

from time windows of data 5, 10, 15, 20, 25, 30 and 35 seconds wide. The

root-sum-squred percent error of the five estimated gains is shown in Figure 7.

Where	
5	 gi	 gi 2 112

ERSS	 gi
i=1

As shown, about 30 seconds of data is required to obtain less than 10% rss

error in this example. Other dynamics of higher order, and therefore more

gains, will be evaluated in the near future and the convergence will not

be as rapid.

The importance of using the proper corrections (e.g., Mcor and N. )
u

is shown in Figure 8 , in which the five exact gains, gl -►
 95 are shown,

along with two sets of gain estimates. The set labeled "uncorrected" was

obtained via straight-forward least squares (i.e., Mcor and N V not included).

u
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fo in the identification problem. 
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the wei9~ts in the objective function used are given. A sample time history 

of the state and simulated pilot's control input is depicted in Figure 6. 

Such time histories were sampled at 10 msec inter~a1s and the gains estimated 

from time windows of data 5, 10, 15, 20, 25, 30 and 35 seconds wide. The 

root-sum-squred percent error of the five estimated gains is shown in Figure 7. 
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As shown, about 30 seconds of data is required to obtain less than 10% rss 

error in this example. Other dynamics of higher order, and therefore more 

gains, will be evaluated in the near future and the convergence will not 

be as rapid. 

The importance of using the proper corrections (e.g., Hcor and Nv ) 
u 

is shown in Figure 8 , in which the five exact gains, g1 -+ g5 are shown, 

along with two sets of gain estillBtes. The set labeled "uncorrected" was 

obtained via straight-forward l~ast squares (i.e., Hcor and N not included). 
Vu 
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Conversely, the "corrected" set used perfectly corrected data, or the actual

X's in the identification. Both sets of gain estimates are based of 50

seconds of data. Clearly, in this case again, the corrections are

important. Further verification-of the method is in process.

Inference of the Objective Function

Attention is now turned to estimation of the objective function weightings

from the gain estimates just discussed. (Note, this is referred to in the

control literature as the "inverse problem".) These weights are

related to the gains via the Riccati matrix K, the solution of

ATK+KA+Q-KBG1BTK=0

and

9T 9T = -G-1BTKx^ u

where

A= A B	
_	

CTQ C 0b--a	 Q = -o -a--R-

BT = 10; I u ,	 Iu = identity of dimension equal to u p control
vector

And recall that Qy, R, and G are the weightings defined in Eqn (0). Now

due to the structure of the OCM, we are ible to reduce the above into some

simpler relations. First, noting that lett'ng G 	 I u , without loss of generality

(at least in the case of scalar control input u p ), we obtain

E^

	

L ^ -gx	 TK	 _9T-(-=9-	 9u = gu
x,	 u

and

R = gu9 + 9XB + BTgx (III.a)
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[ , ] L 1-9 T 
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I 
I 

and 

R I: 9 gT + gTB + BTg u u x x (lILa) 



Now L can be eliminated in the last two relations tf desired, and have

BTCTQyCB - BTgx9TB - H - HT	(IV)

where

H - (gugX + 9T A)AB

By observing Equation III (and IV) we can see that if' estimates of gx

and g  are available, and plant and observation matrices A, B, and C are

known, the R weighting can be obtained directly, but Q  requires special

attention. From Egns. III.b and .c we see that if L can be obtained by

solving III.b, an n x n matrix equation with only C TQC unknown results from

III.c. But this is only possible if B-1 exists, which is only true if the

number of independent control inputs (in u p) equals the number of states

(in x)-an unlikely situation.

An alternate attack using Eqn. IV leads to similar results. One could

conceivably solve for a diagonal Q  via a numerical method like Newton-

Raphson, but that requires the matrix CBB TCT to be invertable. This is possible

if the number of control inputs (in u p) equals the number of outputs (or y),

(or the system transfer function matrix is square). Although this is less

restrictive than the previous situation, it is also untrue in many applications

of interest to us here. So the following conclusions may be stated, that in

general a unique set of objective funct; on weights may not be obtainable from

gain estimates alone. This result is not new, we've just looked at it in

the context of our specific problem.
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Although improved methods are currently under investigation in this

regard, we may always test assumed objective function weights to determine

if they're feasible. This is considered a reasonable alternative since in

an actual experiment, the analyst knows . several reasonable statements for

the objective function, and he may at least test them to see which one is

best supported by the data. To pursue this approach, the accuracy of the

gain estimate will also be developed such . that statistical hypothesis tests

may be performed. But for now, this is an important consideration.

In the case of our numerical example, Equation III.a leads to R = 0,

and Equation IV yields

(11.7) 2(gE + qe) _ -2(11.7)gu gx3 + (11.7 gxr)2

where

q^	 0	 0	 0

0	 qt	 0	 0
Q=
y	 0	 0	 qe 0

0	 0	 0	 qe

Using the estimated gains we obtain

(q* + %) = 2.89	 (actually q, was 1. 1 .35 and qg was 0)

Now "guessing" that q  and qe were zero, at first, we may iterate on qc

and solve III.c, then check with III.b. If no q E > 0 led to a solution,

then the assumptiun of q  and qe equal to zero would need revision. Finally,

note that from Equation III.b, we can actually solve for as many columns (and

rows)	 of L as the number of control inputs (or rank B), and this part of

the L matrix may he used to check results from III.c.

Although improved methods are currently under investigation in this 

regard, we may always test assumed objective function weights to determine 

if they're feasible. This is considered a reasonable alternative since in 

an actual experiment, the analyst knows. several reasonable statements for 
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rows) of L as the number of control inputs (or rank B), and this part of 
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