2,526 research outputs found

    Atomistic models of hydrogenated amorphous silicon nitride from first principles

    Get PDF
    We present a theoretical study of hydrogenated amorphous silicon nitride (a-SiNx:H), with equal concentrations of Si and N atoms (x=1), for two considerably different densities (2.0 and 3.0 g/cm3). Densities and hydrogen concentration were chosen according to experimental data. Using first-principles molecular-dynamics within density-functional theory the models were generated by cooling from the liquid. Where both models have a short-range order resembling that of crystalline Si3N4 because of their different densities and hydrogen concentrations they show marked differences at longer length scales. The low-density nitride forms a percolating network of voids with the internal surfaces passivated by hydrogen. Although some voids are still present for the high-density nitride, this material has a much denser and uniform space filling. The structure factors reveal some tendency for the nonstoichiometric high-density nitride to phase separate into nitrogen rich and poor areas. For our slowest cooling rate (0.023 K/fs) we obtain models with a modest number of defect states, where the low (high) density nitride favors undercoordinated (overcoordinated) defects. Analysis of the structural defects and electronic density of states shows that there is no direct one-to-one correspondence between the structural defects and states in the gap. There are several structural defects that do not contribute to in-gap states and there are in-gap states that do only have little to no contributions from (atoms in) structural defects. Finally an estimation of the size and cooling rate effects on the amorphous network is reported.

    Dyspraxia in a patient with corticobasal degeneration: the role of visual and tactile inputs to action

    Get PDF
    Objectives-To investigate the roles of visual and tactile information in a dyspraxic patient with corticobasal degeneration (CBD) who showed dramatic facilitation in miming the use of a tool or object when he was given a tool to manipulate; and to study the nature of the praxic and neuropsychological deficits in CBD. Methods-The subject had clinically diagnosed CBD, and exhibited alien limb behaviour and striking ideomotor dyspraxia. General neuropsychological evaluation focused on constructional and visuospatial abilities, calculation, verbal fluency, episodic and semantic memory, plus spelling and writing because impairments in this domain were presenting complaints. Four experiments assessed the roles of visual and tactile information in the facilitation of motor performance by tools. Experiment I evaluated the patient's performance of six limb transitive actions under six conditions: (1) after he described the relevant tool from memory, (2) after he was shown a Line drawing of the tool, (3) after he was shown a real exemplar of the tool, (4) after he watched the experimenter perform the action, (5) while he was holding the tool, and (6) immediately after he had performed the action with the tool but with the tool removed from his grasp. Experiment 2 evaluated the use of the same six tools when the patient had tactile but no visual information (while he was blindfolded). Experiments 3 and 4 assessed performance of actions appropriate to the same six tools when the patient had either neutral or inappropriate tactile feedback-that is, while he was holding a non-tool object or a different tool. Results-Miming of tool use was not facilitated by visual input; moreover, lack of visual information in the blindfolded condition did not reduce performance. The principal positive finding was a dramatic facilitation of the patient's ability to demonstrate object use when he was holding either the appropriate tool or a neutral object. Tools inappropriate to the requested action produced involuntary performance of the stimulus relevant action. Conclusions-Tactile stimulation was paramount in the facilitation of motor performance in tool use by this patient with CBD. This outcome suggests that tactile information should be included in models which hypothesise modality specific inputs to the action production system. Significant impairments in spelling and letter production that have not previously been reported in CBD have also been documented

    Compressing Random Microstructures via Stochastic Wang Tilings

    Full text link
    This paper presents a stochastic Wang tiling based technique to compress or reconstruct disordered microstructures on the basis of given spatial statistics. Unlike the existing approaches based on a single unit cell, it utilizes a finite set of tiles assembled by a stochastic tiling algorithm, thereby allowing to accurately reproduce long-range orientation orders in a computationally efficient manner. Although the basic features of the method are demonstrated for a two-dimensional particulate suspension, the present framework is fully extensible to generic multi-dimensional media.Comment: 4 pages, 6 figures, v2: minor changes as suggested by reviewers, v3: corrected two typos in the revised versio

    Calculation of mechanical and thermal influences during coiling of hot strip

    Get PDF
    Coiled steel strip is the final product from flat hot rolling processes. With increasing demand for higher quality of hot rolled strips, especially the evolution of strip flatness during and after coiling becomes a crucial aspect. The main impacts on the flatness properties of hot rolled strips result from residual stresses and “eigen-strains” induced by the last hot rolling passes, by strip cooling at the run-out table, and finally, by the mechanical and thermal conditions during and after the coiling process itself. In this paper, a mathematical model is presented, which takes into account the mechanical and thermal effects on hot rolled strip during and after the coiling process. To improve the prediction quality of the underlying process, a customized self-developed 3D finite-element model has been developed and programmed in C++, leading to a software prototype, which is highly superior to commercial FEM-packages with respect to calculation time and storage capacities. The model is based on a dynamic implicit total Lagrangian formulation. All relevant devices directly interacting with the strip, such as pinch rolls, coiler rolls and mandrel are incorporated in the calculation model. Well known and established methods in the solid-shell theory, like the EAS- and ANS-method, were applied to prevent the occurrence of locking phenomena resulting from low order interpolation functions. Selected benchmark tests were performed to evaluate the accuracy of these novel solid-shell elements in comparison to the results attained by the FEM- package ABAQUS©. The results obtained so far agree very satisfactorily. A further important topic is the contact and friction algorithm, where Coulomb’s friction law is applied. The accurate and reliable determination of the contact between strip and interacting devices as well as the aspect of self-contact was treated by applying a sophisticated two dimensional contact search algorithm, leading to a significantly reduced calculation time. The highly non-linear time-dependent system of equations is integrated by utilizing the (implicit) Newmark time-integration scheme. The developed calculation model serves as an effective tool to predict the interesting stress-distributions and local plastic deformations inside the strip, which induce residual stresses and strip unflatness (latent or even manifest waviness). Furthermore, this tool p ovides the basis for further improvements and investigations on hot rolling production lines

    European Demographic Datasheet 2016

    Get PDF
    The European Demographic Datasheet 2016 shows key demographic data, population trends and projections until 2050. It covers fertility, mortality, migration and population structure, including population ageing, and their changes. The datasheet combines data for all countries of Europe and for broader European regions, as well as maps, population pyramids, tables, graphs and featured thematic boxes. It pays special attention to the importance of migration for the current and future population changes across the continent and to the alternative indicators of population ageing. In comparison to the Data Sheet Poster, the online version provides expanded data coverage, additional maps and population pyramids, ranking charts and details about data sources and definitions. It also allows users to download all data and images

    In ovo yolk carotenoid and testosterone levels interactively influence female transfer of yolk antioxidants to her eggs

    Get PDF
    This is the author accepted manuscript. The final version is available from the Royal Society via the DOI in this recordMothers can influence prenatal conditions by varying the amount of nutrients, hormones or antioxidants they provide to their developing young. Some of these substances even affect the transfer of these compounds in the next generation, but it is less clear how different maternally transmitted compounds interact with each other to shape reproductive resource allocation in their offspring. Here, we found that female Japanese quail that were exposed to high carotenoid levels during embryonic development transferred lower concentrations of yolk antioxidants to their own eggs later in life. This effect disappeared, when both testosterone and carotenoid concentrations were manipulated simultaneously, showing long-term and interactive effects of these maternally derived egg components on a female’s own egg composition. Given that exposure to high levels of testosterone during embryo development stimulates the production of reactive oxygen (ROS) and impairs antioxidant defenses, we propose that carotenoids act as in-ovo antioxidants in an oxidatively stressful environment (i.e. when levels of testosterone are high) but might have prooxidant properties in an environment where they are not used to counteract an increased production of ROS. In line with this hypothesis, we previously showed that prenatal exposure to increased concentrations of yolk carotenoids leads to a rise of oxidative damage at adulthood, but only when yolk testosterone concentrations were not experimentally increased as well. As a consequence, antioxidants in the body may be used to limit oxidative damage in females exposed to high levels of carotenoids during development (but not in females exposed to increased levels of both carotenoids and testosterone), resulting in lower amounts of antioxidants being available for deposition into eggs. Since prenatal antioxidant exposure is known to influence fitness-related traits, the effect detected in this study might have transgenerational consequences.The study was supported by the Swiss National Science Foundation (PP00P3_128386 and PP00P3_157455) and the Fonds zur Förderung des akademischen Nachwuchses

    Age, gender and COVID-19 infections

    Get PDF
    Data for ten European countries which provide detailed distribution of COVID-19 cases by sex and age show that among people of working age, women diagnosed with COVID-19 substantially outnumber infected men. This pattern reverses around retirement: infection rates among women fall at age 60-69, resulting in a cross-over with infection rates among men. The relative disadvantage of women peaks at ages 20-29, whereas the male disadvantage in infection rates peaks at ages 70-79. The elevated infection rates among women of working age are likely tied to their higher share in health- and care-related occupations. Our examination also suggests a link between women's employment profiles and infection rates in prime working ages. The same factors that determine women's higher life expectancy account for their lower fatality and higher male disadvantage at older ages

    A structurally conserved motif in γ-herpesvirus uracil-DNA glycosylases elicits duplex nucleotide-flipping

    Get PDF
    Efficient γ-herpesvirus lytic phase replication requires a virally encoded UNG-type uracil-DNA glycosylase as a structural element of the viral replisome. Uniquely, γ-herpesvirus UNGs carry a seven or eight residue insertion of variable sequence in the otherwise highly conserved minor-groove DNA binding loop. In Epstein–Barr Virus [HHV-4] UNG, this motif forms a disc-shaped loop structure of unclear significance. To ascertain the biological role of the loop insertion, we determined the crystal structure of Kaposi’s sarcoma-associated herpesvirus [HHV-8] UNG (kUNG) in its product complex with a uracil-containing dsDNA, as well as two structures of kUNG in its apo state. We find the disc-like conformation is conserved, but only when the kUNG DNA-binding cleft is occupied. Surprisingly, kUNG uses this structure to flip the orphaned partner base of the substrate deoxyuridine out of the DNA duplex while retaining canonical UNG deoxyuridine-flipping and catalysis. The orphan base is stably posed in the DNA major groove which, due to DNA backbone manipulation by kUNG, is more open than in other UNG–dsDNA structures. Mutagenesis suggests a model in which the kUNG loop is pinned outside the DNA-binding cleft until DNA docking promotes rigid structuring of the loop and duplex nucleotide flipping, a novel observation for UNGs
    corecore