
1 

 

In ovo yolk carotenoid and testosterone levels interactively influence female transfer of yolk 1 

antioxidants to her eggs 2 

GIRAUDEAU Mathieu*,1,2,3, ZIEGLER Ann-Kathrin3,4, McGRAW Kevin1, OKULIAROVÁ 3 

Monika5, ZEMAN Michal5 and TSCHIRREN Barbara2,3 
4 

 5 

1Arizona State University, School of Life Sciences, Tempe, USA. 6 

2 Centre for Ecology & Conservation, University of Exeter, Penryn, UK. 7 

3Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8 

Switzerland  9 

4Department of Biology, Lund University, Sweden. 10 

5Department of Animal Physiology and Ethology, Comenius University, Bratislava, Slovak 11 

Republic 12 

 13 

*Corresponding author. E-mail: giraudeau.mathieu@gmail.com 14 

 15 

Keywords: yolk carotenoids, yolk testosterone, maternal effects, parental care, prenatal 16 

conditions, egg composition 17 

Running title: Maternally transmitted egg compounds affect daughters’ yolk composition 18 

 19 

 15 pages 20 

2487 words 21 

1 figure, 1 table 22 

 23 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/157582168?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 

 

ABSTRACT 24 

Mothers can influence prenatal conditions by varying the amount of nutrients, hormones or 25 

antioxidants they provide to their developing young. Some of these substances even affect the 26 

transfer of these compounds in the next generation, but it is less clear how different maternally 27 

transmitted compounds interact with each other to shape reproductive resource allocation in their 28 

offspring. Here, we found that female Japanese quail that were exposed to high carotenoid levels 29 

during embryonic development transferred lower concentrations of yolk antioxidants to their own 30 

eggs later in life. This effect disappeared, when both testosterone and carotenoid concentrations 31 

were manipulated simultaneously, showing long-term and interactive effects of these maternally 32 

derived egg components on a female’s own egg composition. Given that exposure to high levels 33 

of testosterone during embryo development stimulates the production of reactive oxygen (ROS) 34 

and impairs antioxidant defenses, we propose that carotenoids act as in-ovo antioxidants in an 35 

oxidatively stressful environment (i.e. when levels of testosterone are high) but might have 36 

prooxidant properties in an environment where they are not used to counteract an increased 37 

production of ROS. In line with this hypothesis, we previously showed that prenatal exposure to 38 

increased concentrations of yolk carotenoids leads to a rise of oxidative damage at adulthood, but 39 

only when yolk testosterone concentrations were not experimentally increased as well. As a 40 

consequence, antioxidants in the body may be used to limit oxidative damage in females exposed 41 

to high levels of carotenoids during development (but not in females exposed to increased levels 42 

of both carotenoids and testosterone), resulting in lower amounts of antioxidants being available 43 

for deposition into eggs. Since prenatal antioxidant exposure is known to influence fitness-related 44 

traits, the effect detected in this study might have transgenerational consequences.  45 
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INTRODUCTION 46 

Conditions experienced early in life, and especially those experienced before birth, can 47 

affect offspring phenotype in the long term, influencing, among others, their physiology or 48 

behavior1,2. These developmental conditions are strongly influenced by the amount of nutrients, 49 

hormones, antioxidants or immunoglobulins provided by the mothers to their developing young3. 50 

Some of these maternally-derived resources and developmental cues are known to affect the same 51 

offspring traits (e.g.  growth rate2,4), and it has therefore been hypothesized that maternally-52 

transmitted compounds might interact with each other to shape the offspring’s developmental 53 

trajectory5,6,7. However, to date, such interactive effects have been seldom considered and 54 

experimentally investigated in only one prior study, which revealed negative effects of an 55 

imbalance between yolk androgens (i.e. testosterone) and antioxidants (i.e. carotenoids) levels on 56 

prenatal growth and juvenile oxidative stress levels in Japanese quail8 (Coturnix japonica). 57 

Prenatal exposure to maternally-derived androgens and antioxidants does, however, not 58 

only affect juvenile phenotype, but is also known to have long-term consequences on breeding 59 

strategies at adulthood. For example, prenatal exposure to experimentally increased yolk 60 

androgens levels enhances the development of the nuptial plumage and the frequency of aggressive 61 

displays at adulthood1. Furthermore, in the only study assessing the long-term effects of yolk 62 

antioxidant levels with an experimental approach (i.e. yolk injections), male barn swallows 63 

(Hirundo rustica) that hatched from eggs with experimentally increased vitamin E levels arrived 64 

earlier at their breeding grounds than controls9. Different maternally-derived components have 65 

thus the potential to interactively shape the offspring’s reproductive behavior and reproductive 66 

investment at adulthood. 67 
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Here we experimentally tested this hypothesis by manipulating yolk lutein and yolk testosterone 68 

concentrations in the eggs of Japanese quail using a 2x2 factorial design and assessing their 69 

separate and interactive effects on the steroid and antioxidant compositions of eggs laid by the 70 

female offspring at adulthood.   71 

 72 

METHODS 73 

Adult male and female quails were randomly selected from a captive population maintained at the 74 

University of Zurich, Switzerland and housed in pairs in cages. Eggs were collected and each 75 

clutch was randomly assigned to one of the four treatments: yolk carotenoid (C) manipulation 76 

(injection of 15 µg lutein dissolved in 15µL of safflower oil), yolk testosterone (T) manipulation 77 

(15 ng of testosterone), both yolk carotenoid and yolk testosterone (CT) manipulation or a control 78 

(CO) injection (injection of 15µL of safflower oil) (see Giraudeau et al. 2016a for a full description 79 

of the methods). The doses of testosterone and carotenoids injected represent approximately 1 80 

standard deviation of the published yolk testosterone and yolk carotenoid contents in this 81 

species10,11,12,13. When five months old, randomly chosen females originating from these 82 

manipulated eggs (N= 8 C, 9 T, 8 CT, 15 CO) were weighted (to the nearest g) and housed in pairs 83 

in breeding cages with randomly selected males from our breeding population. The fifth egg of 84 

each clutch was collected and weighted (to the nearest 0.01g) and the yolk and albumen were 85 

separated. The yolk was weighed (to the nearest 0.01g) and then thoroughly mixed. Two yolk 86 

aliquots of 1 ml were collected and immediately stored at -80° C until later quantification of yolk 87 

antioxidant and testosterone concentrations. See ESM for descriptions of the methods used to 88 

extract and analyze yolk testosterone and antioxidant concentrations.  89 
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Levels of yolk antioxidants were positively correlated within eggs, so we performed a principal 90 

component (PC) analysis and used yolk antioxidant PC1 in statistical analyses (see ESM for 91 

correlations among antioxidants and posthoc analyses of the separate antioxidants). PC1 explained 92 

58% of the variation in yolk antioxidant concentrations (ESM).  93 

In total 30 families (6 C, 7 T, 8 CT, 9 CO) were included in this study. Because some families 94 

produced more than one daughter (mean ± SD: 1.3 ± 0.7 daughters per family; range 1-4), family 95 

means were used in the statistical analyses to account for the non-independence of siblings. We 96 

analyzed the effect of exposure to manipulated concentrations of yolk carotenoid and testosterone 97 

during embryo development on a female’s adult body mass and the composition of her eggs using 98 

linear models that contained yolk testosterone manipulation, yolk carotenoid manipulation and 99 

their interaction as fixed effects. The interaction was removed from the final model if it was non-100 

significant. Yolk mass was included as a covariate in the analyses of yolk components to account 101 

for treatment effects on yolk size, and therefore the total content of egg components (see Results). 102 

All statistical analyses were performed in R 3.01 (R Core Team, 2013). 103 

 104 

RESULTS 105 

Females originating from testosterone-injected eggs laid heavier eggs (mean  ± 1SD: T/CT: 12.27 106 

± 0.83 g; C/CO: 11.47 ± 0.80 g; Fig. 1) that contained heavier yolks (T/CT: 3.71 ± 0.44 g; C/CO: 107 

3.29 ± 0.48 g); however, these variables were not affected by the yolk carotenoid manipulation 108 

(Fig. 1, table 1). We found no effect of the egg manipulations on adult body mass (table 1).  109 

Yolk testosterone concentrations in the eggs laid by offspring were not significantly influenced by 110 

the testosterone or carotenoid manipulations (table 1). In contrast, there was a significant 111 

interaction effect between the yolk carotenoid and testosterone manipulations on yolk antioxidant 112 
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concentrations (PC1) in a female’s eggs (table 1; Fig. 1). Females hatched from carotenoid-injected 113 

eggs laid eggs with lower yolk antioxidant concentrations, but only if the yolk testosterone 114 

concentration experienced during embryo development was unmanipulated (Tukey contrast: p = 115 

0.049; all other contrasts p > 0.156; figure 1). Yolk mass was significantly negatively associated 116 

with yolk antioxidant concentrations (PC1) (b = -1.775, Table 1). When the effects of yolk 117 

manipulations were tested for each antioxidant separately, we found the same significant 118 

interactive effect of in ovo testosterone and carotenoid treatments on neoxanthin, violaxanthin, and 119 

zeaxanthin concentrations in eggs laid by the offspring (ESM). 120 

 121 

DISCUSSION 122 

This study provides the first experimental evidence that two maternally derived egg components 123 

have interactive long-term effects on a female’s reproductive investment at adulthood. Female 124 

Japanese quail that were exposed to high carotenoid levels during embryonic development 125 

transferred significantly lower concentrations of yolk antioxidants to their own eggs, but this effect 126 

disappeared when both testosterone and carotenoid concentrations were manipulated 127 

simultaneously in ovo. We previously showed a similar interactive effect of yolk testosterone and 128 

carotenoid manipulation on reactive oxygen metabolite levels at the end of the growth period (5 129 

weeks old birds). Prenatal exposure to high concentrations of yolk carotenoids increased oxidative 130 

damage levels at adulthood, but only when yolk testosterone concentrations were not 131 

experimentally increased as well8, indicating that prenatal conditions (i.e. levels of yolk 132 

antioxidants) have long-term effects on an individual’s oxidant/antioxidant balance. As a 133 

consequence, we propose that circulating antioxidants in the body may be used to limit oxidative 134 

damage in females exposed to high levels of carotenoids during development, resulting in lower 135 
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amounts of antioxidants being available for deposition into eggs later in life. Alternatively, or in 136 

addition, prenatal exposure to high carotenoid levels might shift the trade-off between self-137 

maintenance and reproduction towards a reduced reproductive investment during the first breeding 138 

event, as we have previously shown in males (i.e. reduced testis size14).  139 

 Importantly, the transfer of lower concentrations of yolk antioxidants to eggs was only 140 

observed in females that experienced increased carotenoid but unmanipulated testosterone levels 141 

during embryo development. Recent evidence suggests that embryonic exposure to high levels of 142 

testosterone stimulates the production of reactive oxygen and nitrogen species (ROS/NS), and 143 

impairs antioxidant defenses15,16. We propose that carotenoids might act as antioxidants in an 144 

oxidatively stressful environment (i.e. when levels of testosterone are high) but might have 145 

prooxidant properties in an environment where they are not used to counteract an increased 146 

production of ROS/NS (previous studies have demonstrated such pro-oxidant properties of 147 

carotenoids17). Thus, contrary to individuals only exposed to increased concentrations of 148 

carotenoids at the embryonic stage, females exposed to increased levels of both testosterone and 149 

carotenoids would not suffer from increased levels of oxidative stress (as observed in 8) and would 150 

be able to allocate similar levels of antioxidant to their eggs then control females.  151 

Under this hypothesis, mothers should also co-adjust the deposition of carotenoids (and potentially 152 

also of the other maternally-derived antioxidants) to the levels of androgens deposited in the eggs 153 

to achieve an optimal outcome for the offspring. A first examination of these relationships at the 154 

inter-specific level revealed that high concentrations of testosterone are associated with high 155 

concentrations of the antioxidant vitamin E in eggs18. Further studies should explore the potential 156 

relationships between levels of various maternally-derived hormones that might stimulate ROS/NS 157 

production in offspring (i.e androgens, glucocorticoids) and the egg antioxidant system. 158 
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 In addition to a significant interaction effect between experimentally manipulated yolk 159 

carotenoid and testosterone concentrations on a female’s antioxidant deposition into eggs later in 160 

life, we found that females originating from testosterone-manipulated eggs increased their 161 

breeding investment by laying heavier eggs with heavier yolk than females hatching from eggs in 162 

which testosterone has not been manipulated. This result is in line with the finding of Müller et al. 163 

(2009) who found that female canaries (Serinus canaria) hatching from testosterone-manipulated 164 

eggs laid more eggs than control females (but see 19). Two main hypotheses have been proposed 165 

to explain long-lasting effects of yolk androgens on female breeding performance. First, 166 

embryonic exposure to maternal androgens might promote hormone production or responsiveness 167 

(via increased androgen receptor densities) at later life stages19,20. Second, maternally derived 168 

androgens can positively influence muscle development21, begging behavior22, and growth of 169 

chicks2. Since female breeding performance has been shown to benefit from favorable early-life 170 

conditions in several species23, the long-lasting effect of yolk androgens levels on maternal 171 

reproductive investment might be the indirect consequence of early growth conditions24. The latter 172 

is an unlikely explanation for the patterns observed in our study, however, as we found no effect 173 

of the manipulations on adult body mass and that prenatal growth was negatively, rather than 174 

positively, influenced by an experimental increase of yolk testosterone concentrations8. Instead, it 175 

suggests that the long-term effect of prenatal exposure to high levels of testosterone on egg size is 176 

due to direct long-term effects on a female’s physiology.  177 

 To conclude, our study demonstrates long-term interactive effects of two maternally 178 

derived egg compounds on a female’s egg composition at adulthood. Since prenatal antioxidant 179 

exposure is known to influence several fitness-related traits in birds4, the effect detected in this 180 

study might have transgenerational consequences. 181 
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25. LEGENDS 271 

 272 

FIGURE 1: Long-term effects of yolk testosterone and yolk carotenoid manipulations on egg mass 273 

and the deposition of yolk antioxidants (PC1).  274 

 275 

276 
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FIGURE 1 277 

 278 

279 
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Table 1.  Long-term effects of exposure to manipulated levels of yolk testosterone and yolk 280 

carotenoid during embryo development on body mass and egg composition at adulthood.  281 

  F DF P  

Body mass (g)     

 Carotenoid 
manipulation 

0.164 1, 27 0.688 

 Testosterone 
manipulation 

0.016 1, 27 0.901 

 Interaction 0.300 1, 26 0.588 

     

Egg mass (g)     

 Carotenoid 
manipulation 

0.555 1, 27 0.463 

 Testosterone 
manipulation 

7.064 1, 27 0.013 

 Interaction 0.235 1, 26 0.632 

     

Yolk mass (g)     

 Carotenoid 
manipulation 

0.416 1, 27 0.524 

 Testosterone 
manipulation 

5.958 1, 27 0.025 

 Interaction 0.441 1, 26 0.513 

     

Yolk testosterone (pg 
/ mg yolk) 

    

 Carotenoid 
manipulation 

0.060 1, 26 0.808 
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 282 

 Testosterone 
manipulation 

0.765 1, 26 0.390 

 Interaction 0.137 1, 25 0.714 

 Yolk mass (g) 0.141 1, 26 0.710 

     

Yolk antioxidant PC1      

 Carotenoid 
manipulation 

1.296 1, 25 0.266 

 Testosterone 
manipulation 

0.219 1, 25 0.644 

 Interaction 4.889 1, 25 0.030 

 Yolk mass (g) 5.297 1, 25 0.036 


