445 research outputs found

    Cytogerontology since 1881: A reappraisal of August Weismann and a review of modern progress

    Get PDF
    Cytogerontology, the science of cellular ageing, originated in 1881 with the prediction by August Weismann that the somatic cells of higher animals have limited division potential. Weismann's prediction was derived by considering the role of natural selection in regulating the duration of an organism's life. For various reasons, Weismann's ideas on ageing fell into neglect following his death in 1914, and cytogerontology has only reappeared as a major research area following the demonstration by Hayflick and Moorhead in the early 1960s that diploid human fibroblasts are restricted to a finite number of divisions in vitro. In this review we give a detailed account of Weismann's theory, and we reveal that his ideas were both more extensive in their scope and more pertinent to current research than is generally recognised. We also appraise the progress which has been made over the past hundred years in investigating the causes of ageing, with particular emphasis being given to (i) the evolution of ageing, and (ii) ageing at the cellular level. We critically assess the current state of knowledge in these areas and recommend a series of points as primary targets for future research

    Time correlations and 1/f behavior in backscattering radar reflectivity measurements from cirrus cloud ice fluctuations

    Full text link
    The state of the atmosphere is governed by the classical laws of fluid motion and exhibits correlations in various spatial and temporal scales. These correlations are crucial to understand the short and long term trends in climate. Cirrus clouds are important ingredients of the atmospheric boundary layer. To improve future parameterization of cirrus clouds in climate models, it is important to understand the cloud properties and how they change within the cloud. We study correlations in the fluctuations of radar signals obtained at isodepths of winter and fall cirrus clouds. In particular we focus on three quantities: (i) the backscattering cross-section, (ii) the Doppler velocity and (iii) the Doppler spectral width. They correspond to the physical coefficients used in Navier Stokes equations to describe flows, i.e. bulk modulus, viscosity, and thermal conductivity. In all cases we find that power-law time correlations exist with a crossover between regimes at about 3 to 5 min. We also find that different type of correlations, including 1/f behavior, characterize the top and the bottom layers and the bulk of the clouds. The underlying mechanisms for such correlations are suggested to originate in ice nucleation and crystal growth processes.Comment: 33 pages, 9 figures; to appear in the Journal of Geophysical Research - Atmosphere

    Learning From Early Attempts to Generalize Darwinian Principles to Social Evolution

    Get PDF
    Copyright University of Hertfordshire & author.Evolutionary psychology places the human psyche in the context of evolution, and addresses the Darwinian processes involved, particularly at the level of genetic evolution. A logically separate and potentially complementary argument is to consider the application of Darwinian principles not only to genes but also to social entities and processes. This idea of extending Darwinian principles was suggested by Darwin himself. Attempts to do this appeared as early as the 1870s and proliferated until the early twentieth century. But such ideas remained dormant in the social sciences from the 1920s until after the Second World War. Some lessons can be learned from this earlier period, particularly concerning the problem of specifying the social units of selection or replication

    Insulin-like signalling to the maternal germline controls progeny response to osmotic stress

    Get PDF
    In 1893 August Weismann proposed that information about the environment could not pass from somatic cells to germ cells, a hypothesis now known as the Weismann barrier. However, recent studies have indicated that parental exposure to environmental stress can modify progeny physiology and that parental stress can contribute to progeny disorders. The mechanisms regulating these phenomena are poorly understood. We report that the nematode Caenorhabditis elegans can protect itself from osmotic stress by entering a state of arrested development and can protect its progeny from osmotic stress by increasing the expression of the glycerol biosynthetic enzyme GPDH-2 in progeny. Both of these protective mechanisms are regulated by insulin-like signalling: insulin-like signalling to the intestine regulates developmental arrest, while insulin-like signalling to the maternal germline regulates glycerol metabolism in progeny. Thus, there is a heritable link between insulin-like signalling to the maternal germline and progeny metabolism and gene expression. We speculate that analogous modulation of insulin-like signalling to the germline is responsible for effects of the maternal environment on human diseases that involve insulin signalling, such as obesity and type-2 diabetes

    Pseudotumoral tracheobronchial amyloidosis mimicking asthma: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Tracheobronchial amyloidosis is an uncommon localized form of amyloidosis that can simulate a tracheal tumor. Clinical signs are not specific and the diagnosis is rarely given before performing a bronchoscopy with multiples biopsies.</p> <p>Case presentation</p> <p>We report the case of a 60-year-old Moroccan woman, complaining of dyspnea and wheezing for three years, who was treated at our institution for management of severe asthma. A bronchoscopy revealed a tumor formation of her trachea; multiples biopsies were performed and a diagnosis made of amyloid light-chain amyloidosis. She successfully received an endoscopic resection.</p> <p>Conclusion</p> <p>This case highlights the importance of routinely carrying out an endoscopy in any patient complaining of atypical bronchial symptoms or with uncontrolled asthma. Tracheal amyloidosis is a rare disease, confirmed by histological examination of bronchial biopsies, and the treatment of choice is based on the bronchoscopic resection.</p

    Large orbital moment of two coupled spin-half Co ions in a complex on gold

    Get PDF
    The magnetic properties of transition-metal ions are generally described by the atomic spins of the ions and their exchange coupling. The orbital moment, usually largely quenched due the ligand field, is then seen as a perturbation. In such a scheme, S = 1/2 ions are predicted to be isotropic. We investigate a Co(II) complex with two antiferromagnetically coupled 1/2 spins on Au(111) using low-temperature scanning tunneling microscopy, X-ray magnetic circular dichroism, and density functional theory. We find that each of the Co ions has an orbital moment comparable to that of the spin, leading to magnetic anisotropy, with the spins preferentially oriented along the Co–Co axis. The orbital moment and the associated magnetic anisotropy is tuned by varying the electronic coupling of the molecule to the substrate and the microscope tip. These findings show the need to consider the orbital moment even in systems with strong ligand fields. As a consequence, the description of S = 1/2 ions becomes strongly modified, which have important consequences for these prototypical systems for quantum operations.We acknowledge financial support from the European Union’s Horizon 2020 program, grant number 766726. C.L. thanks the Alexander von Humboldt Foundation for a Research Fellowship for Postdoctoral Researchers and also acknowledges support from Kiel Nano, Surface and Interface Science (KiNSIS). M.G. acknowledges funding from the Deutsche Forschungsgemeinschaft (DFG; Project-ID 278162697 - CRC 1242, Project A08). R.R. and N.L. acknowledge financial support from the European Union project ESiM 101046364 and the Spanish State Research Agency grant (Project No. PID2021-127917NB-I00) funded by MCIN/AEI/10.13039/50110001103; they are grateful for the computer resources at Finisterrae II and the technical support provided by CESGA. Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union. Neither the European Union nor the granting authority can be held responsible for them. Centro de QuĂ­mica Estrutural (CQE) and Institute of Molecular Sciences (IMS) acknowledge the financial support of Fundação para a CiĂȘncia e Tecnologia (FCT) (Projects UIDB/00100/2020, UIDP/00100/2020, and LA/P/0056/2020, respectively). P.N.M. and S.Re. thank FTC for the research contracts CEEC-IND/00509/2017 and 2020.02134.CEECIND. S.Ru. acknowledges funding from the Swiss National Science Foundation (grant number 200021_175941).Peer reviewe

    Crystal structure of a tripartite complex between C3dg, C-terminal domains of factor H and OspE of Borrelia burgdorferi

    Get PDF
    Complement is an important part of innate immunity. The alternative pathway of complement is activated when the main opsonin, C3b coats non-protected surfaces leading to opsonisation, phagocytosis and cell lysis. The alternative pathway is tightly controlled to prevent autoactivation towards host cells. The main regulator of the alternative pathway is factor H (FH), a soluble glycoprotein that terminates complement activation in multiple ways. FH recognizes host cell surfaces via domains 19–20 (FH19-20). All microbes including Borrelia burgdorferi, the causative agent of Lyme borreliosis, must evade complement activation to allow the infectious agent to survive in its host. One major mechanism that Borrelia uses is to recruit FH from host. Several outer surface proteins (Osp) have been described to bind FH via the C-terminus, and OspE is one of them. Here we report the structure of the tripartite complex formed by OspE, FH19-20 and C3dg at 3.18 Å, showing that OspE and C3dg can bind simultaneously to FH19-20. This verifies that FH19-20 interacts via the “common microbial binding site” on domain 20 with OspE and simultaneously and independently via domain 19 with C3dg. The spatial organization of the tripartite complex explains how OspE on the bacterial surface binds FH19-20, leaving FH fully available to protect the bacteria against complement. Additionally, formation of tripartite complex between FH, microbial protein and C3dg might enable enhanced protection, particularly on those regions on the bacteria where previous complement activation led to deposition of C3d. This might be especially important for slow-growing bacteria that cause chronic disease like Borrelia burgdorferi.Peer reviewe
    • 

    corecore