85,309 research outputs found
Modeling the Rise of Fibril Magnetic Fields in Fully Convective Stars
Many fully convective stars exhibit a wide variety of surface magnetism,
including starspots and chromospheric activity. The manner by which bundles of
magnetic field traverse portions of the convection zone to emerge at the
stellar surface is not especially well understood. In the Solar context, some
insight into this process has been gleaned by regarding the magnetism as
consisting partly of idealized thin flux tubes (TFT). Here, we present the
results of a large set of TFT simulations in a rotating spherical domain of
convective flows representative of a 0.3 solar-mass, main-sequence star. This
is the first study to investigate how individual flux tubes in such a star
might rise under the combined influence of buoyancy, convection, and
differential rotation. A time-dependent hydrodynamic convective flow field,
taken from separate 3D simulations calculated with the anelastic equations,
impacts the flux tube as it rises. Convective motions modulate the shape of the
initially buoyant flux ring, promoting localized rising loops. Flux tubes in
fully convective stars have a tendency to rise nearly parallel to the rotation
axis. However, the presence of strong differential rotation allows some
initially low latitude flux tubes of moderate strength to develop rising loops
that emerge in the near-equatorial region. Magnetic pumping suppresses the
global rise of the flux tube most efficiently in the deeper interior and at
lower latitudes. The results of these simulations aim to provide a link between
dynamo-generated magnetic fields, fluid motions, and observations of starspots
for fully convective stars.Comment: 20 pages, 15 figures, accepted to Astrophysical Journa
Robotic observations of the most eccentric spectroscopic binary in the sky
The visual A component of the Gliese 586AB system is a double-lined
spectroscopic binary consisting of two cool stars with the exceptional orbital
eccentricity of 0.976. Such an extremely eccentric system may be important for
our understanding of low-mass binary formation. We present a total of 598
high-resolution echelle spectra from our robotic facility STELLA from 2006-2012
which we used to compute orbital elements of unprecedented accuracy. The orbit
constrains the eccentricity to 0.97608+/-0.00004 and the orbital period to
889.8195+/-0.0003d. The masses of the two components are 0.87+/-0.05 Msun and
0.58+/-0.03 Msun if the inclination is 5+/-1.5degr as determined from
adaptive-optics images, that is good to only 6% due to the error of the
inclination although the minimum masses reached a precision of 0.3%. The flux
ratio Aa:Ab in the optical is betwee n 30:1 in Johnson-B and 11:1 in I. Radial
velocities of the visual B-component (K0-1V) appear constant to within 130 m/s
over six years. Sinusoidal modulations of Teff of Aa with an amplitude of apprx
55 K are seen with the orbital period. Component Aa appears warmest at
periastron and coolest at apastron, indicating atmospheric changes induced by
the high orbital eccentricity. No light variations larger than approximately 4
mmag are detected for A, while a photometric period of 8.5+/-0.2 d with an
amplitude of 7 mmag is discovered for the active star B, which we interpret to
be its rotation period. We estimate an orbital period of approx 50,000 yr for
the AB system. The most likely age of the AB system is >=2 Gyr, while the
activity of the B component, if it were a single star, would imply 0.5 Gyr.
Both Aa and B are matched with single-star evolutionary tracks of their
respective mass
Spatial Price Integration in U.S. and Mexican Rice Markets
Agricultural trade between the U.S. and Mexico has become progressively liberalized over the past 20 years, with significant increases in bilateral trade in many sectors. The rice sector in both nations, however, continues to be highly protected, with producers and millers on both sides of the border continuing to protest the other nation's protectionist policies. This paper examines market efficiency and spatial price integration in ten U.S. and Mexican rice markets over the 1998-2002 period, during which a retaliatory antidumping duty was imposed by Mexico. The paper uses a multiple step analytical process, including analysis of market price differentials, stationarity tests, bivariate and multivariate cointegration tests, and impulse response analysis. Based on the cointegration results, long-run equilibrating relationships are shown to bind most Mexican markets to U.S. markets, and the U.S. markets are shown to be integrated with continuity. Smaller and more remote Mexican markets located far from transport hubs and milling centers tend not to be integrated with other regions, suffer from information asymmetries, and are characterized by relatively high price levels. In large markets where tariffs tend to be binding, trade policy plays a key role in determining equilibrium market relationships. For example, the tariff structure largely determines whether rice consumed in Mexico will primarily be milled domestically or in the U.S. in the long run. Overall, the results suggest that while consumers in major urban centers have benefited from freer trade, those in remote rural markets have yet to realize significant gains from liberalized rice markets.Crop Production/Industries, Demand and Price Analysis,
Application of NASAP to the design of communication circuits
Modifications to CDC 3600 NASAP for design of linear communication circuit
A Lagrange-D'Alembert formulation of the equations of motion of a helicopter carrying an externally suspended load
The exact nonlinear equations of motion are derived for a helicopter with an extenal load suspended by fore and aft, rigid-link cables. Lagrange's form of D'Alembert's principle is used. Ten degrees of freedom are necessary to represent the motion of this system in an inertial reference frame: six for the helicopter relative to inertial space and four for the load relative to the helicopter
- …
