Many fully convective stars exhibit a wide variety of surface magnetism,
including starspots and chromospheric activity. The manner by which bundles of
magnetic field traverse portions of the convection zone to emerge at the
stellar surface is not especially well understood. In the Solar context, some
insight into this process has been gleaned by regarding the magnetism as
consisting partly of idealized thin flux tubes (TFT). Here, we present the
results of a large set of TFT simulations in a rotating spherical domain of
convective flows representative of a 0.3 solar-mass, main-sequence star. This
is the first study to investigate how individual flux tubes in such a star
might rise under the combined influence of buoyancy, convection, and
differential rotation. A time-dependent hydrodynamic convective flow field,
taken from separate 3D simulations calculated with the anelastic equations,
impacts the flux tube as it rises. Convective motions modulate the shape of the
initially buoyant flux ring, promoting localized rising loops. Flux tubes in
fully convective stars have a tendency to rise nearly parallel to the rotation
axis. However, the presence of strong differential rotation allows some
initially low latitude flux tubes of moderate strength to develop rising loops
that emerge in the near-equatorial region. Magnetic pumping suppresses the
global rise of the flux tube most efficiently in the deeper interior and at
lower latitudes. The results of these simulations aim to provide a link between
dynamo-generated magnetic fields, fluid motions, and observations of starspots
for fully convective stars.Comment: 20 pages, 15 figures, accepted to Astrophysical Journa