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ABSTRACT

Many fully convective stars exhibit a wide variety of surface magnetism, including starspots and chromospheric
activity. The manner by which bundles of magnetic field traverse portions of the convection zone to emerge at the
stellar surface is not especially well understood. In the solar context, some insight into this process has been
gleaned by regarding the magnetism as consisting partly of idealized thin flux tubes (TFTs). Herewe present the
results of a large set of TFT simulations in a rotating spherical domain of convective flows representative of a
0.3Me main-sequence star. This is the first study to investigate how individual flux tubes in such a star might rise
under the combined influence of buoyancy, convection, and differential rotation. A time-dependent hydrodynamic
convective flow field, taken from separate 3D simulations calculated with the anelastic equations, impacts the flux
tube as it rises. Convective motions modulate the shape of the initially buoyant flux ring, promoting localized
rising loops. Flux tubes in fully convective stars have a tendency to rise nearly parallel to the rotation axis.
However, the presence of strong differential rotation allows some initially low-latitude flux tubes of moderate
strength to develop rising loops that emerge in the near-equatorial region. Magnetic pumping suppresses the global
rise of the flux tube most efficiently in the deeper interior and at lower latitudes. The results of these simulations
aim to provide a link between dynamo-generated magnetic fields, fluid motions, and observations of starspots for
fully convective stars.
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1. INTRODUCTION

Mdwarfs are the most abundant stars in the solar
neighborhood, and among the most magnetically active. Often
this magnetism is observed through photometric and Doppler
imaging of starspots (e.g., Barnes et al. 2015; Davenport et al.
2015), or monitoring of coronal or chromospheric activity (e.g.,
Hawley et al. 1996; Pizzolato et al. 2003; Wright et al. 2011).
Measurements of Zeeman broadening on magnetically sensi-
tive atomic lines or molecular bands suggest average surface
magnetic fields reaching a fewkilogauss (e.g., Johns-Krull &
Valenti 1996; Reiners & Basri 2007), comparable to the
magnetic field observed in sunspots (e.g., Solanki 2003;
Borrero & Ichimoto 2011). Violent flares rivaling those of
the Sun are commonplace (e.g., Hilton et al. 2010; Osten
et al. 2010), calling into question the habitability of planets in
an M-dwarf system (e.g., Segura et al. 2010; Cohen
et al. 2014).

This magnetic activity ultimately arises from dynamo action
occurring within the star. Many dynamical processes may
contribute to the operation of the dynamo, but convection,
rotation, and shear are all thought to play particularly
significant roles (see, e.g., Moffatt 1978; Brandenburg &
Subramanian 2005; Miesch & Toomre 2009). In this paper, we
explore the possibility that fibril magnetic fields are generated
by dynamo action in the interiors of low-mass starsand rise to
the surface (via magnetic buoyancy),where they might be
observed. We examine the rise of these magnetic structures via
simulations within the thin flux tube (TFT) approximation. This
approach has been widely used in the solar context, but not
previously applied to fully convective stars (apart from the
brief analysis in Browning et al. 2016). In this section, we
outline some observational aspects of stellar magnetism that
motivate and guide our work, and wereview previous
theoretical studies of magnetic fields in Mdwarfs.

1.1. Magnetism across the Tachocline Divide

It has long been argued that the seat of the global dynamo in
solar-type stars resides in the tachocline, a region of shear at the
interface between the differentially rotating convection zone
and the stably stratified (and rigidly rotating) interior (e.g.,
Spiegel & Weiss 1980; Parker 1993; Charbonneau &
MacGregor 1997; Ossendrijver 2003). In this classic “interface
dynamo,” the toroidal magnetic field is amplified and stored in
the stably stratified tachocline until becoming unstable to
magnetic buoyancy instabilities (see, e.g., Hughes & Proc-
tor 1988; Hughes et al. 2007; Fan 2009; Charbonneau 2010;
Cheung & Isobe 2014). Portions of the field rise through the
convection zone; some are shredded, others may be “pumped”
downward by the convection (e.g., Tobias et al. 2001), but
some rise to the surface,where they may be observed as active
regions. In this model, the appearance of starspots in distinct
latitudinal bands on the Sun and some solar-like stars (e.g.,
Barnes et al. 1998) results essentially from the combined
effects of magnetic buoyancy, magnetic tension, and Coriolis
forces that influence fibril magnetic structures as they rise (for a
review, see,e.g., Fan 2009). Some recent models have adopted
the view that the tachocline may not play as crucial a role as
previously believed (see, e.g., Brandenburg 2005, and discus-
sion below). But in many of these, the differential rotation is
still regarded as crucial: either as a direct source of poloidal
field from toroidal, or as a way of mitigating the effects of
small-scale dynamo action (Tobias & Cattaneo 2013; Cattaneo
& Tobias 2014).
Stars with masses 0.35 M (near the transition from

spectral types M3 to M4) are fully convectiveand so lack an
interface region akin to the solar tachocline. But clearly stars on
either side of this “tachocline divide” still effectively build
magnetic fields—with, e.g., chromospheric Hα emission, a
common proxy for magnetic activity, increasingly prevalent in
the late M spectral types (e.g., Hawley et al. 1996; West et al.

The Astrophysical Journal, 827:95 (20pp), 2016 August 20 doi:10.3847/0004-637X/827/2/95
© 2016. The American Astronomical Society. All rights reserved.

1

mailto:mweber@astro.ex.ac.uk
http://dx.doi.org/10.3847/0004-637X/827/2/95
http://crossmark.crossref.org/dialog/?doi=10.3847/0004-637X/827/2/95&domain=pdf&date_stamp=2016-08-11
http://crossmark.crossref.org/dialog/?doi=10.3847/0004-637X/827/2/95&domain=pdf&date_stamp=2016-08-11


2004; Schmidt et al. 2015). Further, in at least some ways that
magnetism is akin to that observed in Sun-like stars: in
particular, there is still some form of rotation–activity
correlation (e.g., Reiners & Basri 2009; Wright et al. 2011;
Reiners et al. 2012; West et al. 2015). Although such stars do
not possess a tachocline, it is natural to wonder whether
internal shear (i.e., differential rotation) might play a similar
role, and whether any other signatures of the transition to full
convection might be found in, for example, the patterns of
magnetic activity visible at their surfaces.

Observations suggest that surface differential rotation is
comparatively smaller for stars of lower effective temperature
(e.g., Reinhold et al. 2013), similar to the trend found from
mean-field models (e.g., Küker & Rüdiger 2011) and from 3D
dynamo simulations (discussed below). The surface shear from
the equator to the pole of some M4 dwarfs indicates essentially
solid-body rotation (e.g., Morin et al. 2008; Davenport
et al. 2015). Observations of magnetic “spots” at the surface
of a star encode, in principle, information about the generation
of fields and their rise to the surface. In contrast to the preferred
toroidal belts of activity observed on the Sun, starspots on even
rapidly rotating Mdwarfs have been observed at all latitudes
(though clearly with far less precision than is possible in the
solar case; e.g., Barnes et al. 2015; Davenport et al. 2015). It
may be the case that polar starspot caps are the result of a
predominantly dipolar magnetic field topology, as seen in some
3D global dynamo models of fully convective stars (e.g.,
Gastine et al. 2013; Yadav et al. 2015a, 2015b). However, it is
also known that rapid rotation has a tendency to deflect
buoyantly rising flux tubes poleward (e.g., Schüssler &
Solanki 1992; DeLuca et al. 1997). If such tubes were
generated in the interior, they would also then tend to emerge
near the poles.

Spots constitute only a part of the surface magnetism. While
the surface magnetic field may reach a few kilogauss, Reiners
& Basri (2009) report that more than ~85% of the magnetic
flux in earlytomid-Mdwarfs is on small scales. Furthermore,
a reduced starspot-induced light-curve variability in mid-
tolate Mdwarfs compared to earlier spectral types suggests
a more uniform distribution of starspots (see, e.g., Messina
et al. 2003; Rockenfeller et al. 2006; Jackson & Jeffries 2012).
At some level, every star likely possesses a unique magnetic
field topology, with both large-scale and small-scale surface
fields contributing to the overall observed magnetic field
strength. What remains clear is that dynamos in fully
convective stars are capable of producing strong magnetic
activity, in some cases without evident differential rotation.
These magnetic fields may lead to observable starspots, which
could exceed the latitude and filling factor of spots on the Sun.

1.2. Prior Modeling and This Work

The generation of magnetic fields by dynamo action in fully
convective stars is an intricate processand not especially well
understood. One early suggestion was that such objects would
host only a turbulent magnetic field, structured on small spatial
scales (Durney et al. 1993). Within the context of mean-field
theory, Chabrier & Küker (2006) later suggested that such stars
host a2 dynamos, with helical motions as the source of both the
poloidal and toroidal magnetic fields. Several authors have
turned to magnetohydrodynamic (MHD) numerical simulations
as a way of gauging the strength and morphology of the
magnetism, which in turn arises from the combined influences

of convection, rotation, and shear. In the context of fully
convective stars specifically, Dobler et al. (2006), Browning
(2008), and Yadav et al. (2015a) have found that fields with a
wide range of spatial scales can be built by the flows. Under the
strong rotational constraints typical of Mdwarfs, a nontrivial
large-scale magnetic field component can be generated. In the
global, anelastic MHD models of Browning (2008) and Yadav
et al. (2015a), for example, the overall magnetic field grows
until it is roughly in equipartition with the kinetic energy
(corresponding to average strengths of ∼2–10 kG in different
regions of the spherical domain). In both cases, the strong
magnetism acts to reduce differential rotation present in
hydrodynamic progenitor calculations. The spatial structure
of the field varies somewhat in different models. In Yadav et al.
(2015a) the field exhibits a strong dipolar component
(coexisting with smaller-scale features), whereas in Browning
(2008) the magnetic energy spectrum peaks at somewhat higher
spherical harmonic degrees (i.e., smaller spatial scales). In the
context of solar-like stars, simulations have likewise suggested
that strong and coherent mean fields (both toroidal and
poloidal) may be built without a “tachocline” of shear,
particularly if the overall influence of rotation is strong enough.
In the simulations of Brown et al. (2010, 2011), or Augustson
et al. (2015), for example, coherent “wreaths” of toroidal field
are built amidthe convection, provided thatit is rotating
rapidly enough. Though these simulations operate in parameter
regimes far removed from those realized in actual stars, surely
influencing the character of the magnetism (see, e.g., discus-
sions in Cattaneo & Hughes 2009; Tobias et al. 2011), they are
nonetheless suggestive of the sorts of organized fields that
might be built by convection and rotation.
These global-scale simulations are just beginning to capture

some aspects of magnetic buoyancy, long thought to play a role
in stellar dynamos. Magnetic buoyancy has been studied
extensively using both analytical theory and simulations in
localized domains (see, e.g., Parker 1955, 1975; New-
comb 1961; Acheson 1979; Hughes & Proctor 1988;
Fan 2009; Cheung & Isobe 2014). In particular, the global
simulations of a rapidly rotating convective envelope (with no
tachocline) by Nelson et al. (2011, 2013) self-consistently
generate toroidal magnetic structures that rise under the
combined influence of magnetic buoyancy and advection by
convective flows. In those simulations, such structures arise
essentially as the high-strength tail of an extended distribution
of field strengths: while typical field strengths are only a
fewkilogauss, the buoyant loops occur only in regions with
field strengths >35 kG. The models described there are
extraordinarily expensive to compute. Indeed, it is only by
reaching a particularly low level of diffusion (achieved through
the use of a dynamic Smagorinsky subgrid-scale model) that
the buoyant loops begin to emerge naturally.
Any real stellar dynamo will produce magnetic structures

with a wide range of spatial scales and field strengths. Even in
the absence of strong internal differential rotation, bands of
coherent toroidal field may arise. For example, the simulations
of Yadav et al. (2015a) or Browning (2008) both yield toroidal
fields that exceed 10 kG (and are greater than the associated
poloidal fields), despite the weak zonal flows. Because the
convection is comparatively weak in Mdwarfsand rotation is
often relatively rapid, even modest angular velocity contrasts of
DW W ~ -10 3 can still yield a considerable influence on the
dynamo. Turning to the simulations of Nelson et al.
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(2011, 2013) as a qualitative guide, we might expect that
pushing the simulations to even lower values of diffusivity (and
commensurately more turbulent flows) would result in toroidal
fields with stronger portions, even if the mean level of magnetic
energy were not greatly changed. The strongest of these fields
must feel the effects of magnetic buoyancyand so begin to rise.

The journey of magnetic fields from their region of
generation to the stellar surface is complex. Often the flux
tube model is adopted to describe the dynamic evolution of
magnetic field bundles. A rich body of work applying the flux
tube model in the solar context has provided important insight
into the flux emergence process. These simulations have been
performed in both horizontal and spherical geometries, utilizing
either a fully 3D MHD approach or the effectively 1D TFT
approximation (for a comprehensive review, see, e.g.,
Fan 2009).

TFT calculations have been useful in understanding the
mechanisms driving the observed properties of solar active
regions. They have been particularly helpful in elucidating the
role that Coriolis force plays in determining the latitude of
emergence (e.g., Choudhuri 1989; Fan et al. 1993; Caligari
et al. 1995), tilt of the active region toward the equator (e.g.,
D’Silva & Choudhuri 1993; Caligari et al. 1995), and
morphological (e.g., Fan et al. 1993; Caligari et al. 1998) and
geometrical (e.g., Moreno-Insertis et al. 1994; Caligari
et al. 1995) asymmetries. Unlike TFT simulations, flux tube
simulations of the 3D variety can resolve the cross-section of
the tube and twist of the internal magnetic field lines. These
simulations also capture the back-reaction of the magnetic
structures on the surrounding plasma and the possible
shredding of the flux tube by convection (e.g., Fan
et al. 2003; Abbett et al. 2004; Jouve & Brun 2009; Pinto &
Brun 2013). However, due to the limited numerical resolution
and relatively high imposed magnetic diffusion of such 3D
models, tubes with strong super-equipartition magnetic field
strength and large radii are typically required, corresponding to
a total flux often larger than observed active regions on the Sun
(i.e., 1023 Mx). Note, though, that the radii of flux tubes in
some 3D models, for instance, Fan (2008) and Jouve & Brun
(2009), are only ∼3 times larger than in the simulations we
present here (see Section 2.2).

Although flux tube models cannot address the self-consistent
formation of magnetic field bundles, they are nonetheless
instructive. In particular, they allow the flexibility of prescrib-
ing initial conditions ofboththe flux tube and the external
environment to explore a variety of possible situations that may
be realized in stars. Weber et al. (2011, 2013b) andWeber &
Fan (2015) examine the effect solar-like convection has on the
local and global evolution of magnetic flux tubes while
circumventing the problem of artificial diffusion by employing
the TFT model in a hydrodynamic convection simulation.
While idealized, these simulations complement the results of
both 3D MHD flux tube simulations and those of the buoyantly
rising loops generated through dynamo action as in Nelson
et al. (2014). Namely, they show that both magnetic buoyancy
and convection contribute to the flux emergence process, acting
in concert to replicate the observed properties of solar active
regions. Additionally, as the TFT model is a 1D code,
simulations of individual flux tubes may be performed quickly
on single-processor machines, much faster than 3D simulations
requiring millions of processor hours on massively parallel
supercomputers.

Inspired by the growing number of observations of fully
convective stars and encouraged by the results obtained from
previous TFT simulations, we turn here to simulations of TFTs
embedded in fluid motions representative of a fully convective
star. Our aim is to investigate whether toroidal fields built in the
bulk of the convection zone could potentially give rise to the
starspots observed on fully convective Mdwarfs. Our approach
adopts a number of simplistic assumptions: most significantly,
we have assumed that the dynamo-generated magnetic field
produces coherent, toroidal tubes of field. The traditional TFT
model assumes that this magnetic field is generated by an
interface dynamo at the boundary of the radiative interior and
convective envelope. Here, in effect, we assume that a
distributed dynamo is capable of building toroidal flux tubes
as well.
In Section 2, we introduce our model and initial flux tube

conditions. Section 3 describes the evolution of axisymmetric
flux tubes in a quiescent interior, both initially in temperature
equilibrium (Sections 3.1–3.2) and in comparison to those in
mechanical equilibrium (Section 3.3). We present the results of
our TFT simulations embedded in a hydrodynamic convective
flow field in Section 4, focusing on the latitude of emergence
and the effect of differential rotation in Section 4.2and the
efficiency of magnetic pumping in Section 4.3. We conclude
and reflect on our results in Section 5.

2. FORMULATING THE PROBLEM

2.1. Modeling Fibril Magnetic Fields

The dynamics of thin, isolated magnetic flux tubes can be
described by invoking the TFT approximation (e.g., Roberts &
Webb 1978; Ferriz-Mas et al. 1989; Spruit 1981). The TFT
equations are derived from ideal MHD, operating under the
assumption that all variables are constant over the cross-
sectional radius a of the flux tube. Consequently, the set of
equations is reduced to one spatial dimension, with all
quantities represented by their values along the flux tube axis.
The equations that describe the evolution of each Lagrangian
element of the 1D flux tube are as follows:
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where, r, v, B, ρ, p, T, which are functions of time t and arc
length s measured along the tube, denote, respectively, the
position, velocity, magnetic field strength, gas density,
pressure, and temperature of a Lagrangian tube
segment; º ¶ ¶l r s is the unit vector tangential to the flux
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tube; º ¶ ¶k r s2 2 is the tube’s curvature vector;subscript ^
denotes the component perpendicular to the flux tube;Φ is the
constant total flux of the tube;re, pe, and μ, which are functions
of depth only, are the pressure, density, and mean molecular
weight of the surrounding external plasma;g is the gravita-
tional acceleration and a function of depth;W0 is the angular
velocity of the reference frame corotating with the star, with W0

set to the typical solar rotation rate of 2.6 ´ -10 6 rad s−1; Cd

is the drag coefficient set to unity;γ is the adiabatic exponent
r¶ ¶pln ln ad( ) ;S is the entropy per unit mass;∇ad is the

adiabatic temperature gradient d T d pln ln ad( ) , assumed to be
the same as the background plasma;R is the ideal gas
constant;and v r t,e ( ) is an external velocity field relative to
the rotating frame of reference that impacts the dynamics of the
TFT through the drag force term, described in Section 2.3. The
term v r t,e ( ) accounts for both the local convective flows and
mean flows such as differential rotation.

In the above equations, we do not introduce an explicit
magnetic diffusion or kinematic viscosity term. The TFT
approximation preserves the frozen-in condition of the
magnetic fields, proceeding with an effectively infinite
magnetic Reynolds number. The flux tube evolves passively
in the external fluid, imparting no back-reaction on the fluid in
which it is embedded. The magnetic field of the flux tube is
untwisted such that it only has a component in the l̂ direction,
and the tube is discretized with 800 uniformly spaced mesh
points along its total length. A description of the numerical
methods used to solve the flux tube evolution as determined by
the above set of equations is discussed in detail by Fan et al.
(1993). The fundamental simulation code is the same as in
Weber & Fan (2015), extended here to a fully convective
interior. Stratification and thermodynamic properties of the
external field-free plasma are taken from a one-dimensional
stellar structure model of a fully convective 0.3Me main-
sequence star provided by Isabelle Baraffe following Chabrier
& Baraffe (1997).

The last term on the right-hand side of Equation (3) contains
the rate of heat input per unit volume to the flux tube plasma,
which can be reduced to two dominant terms (see Fan &
Fisher 1996; Weber & Fan 2015):

r k
a

» - - -FT
dS

dt a
T T , 6e erad

1
2

2
· ( ) ( )

where Frad is the radiative energy flux vector, ke is the radiative
conductivity, a1 is the first zero of the Bessel function J x0 ( ),
and p= Fa B 1 2( ) is the cross-sectional radius of the flux
tube. Thermodynamic values Frad, ke, and Te are taken from the
stellar structure model. The first term on the right-hand side of
Equation (6) is the divergence of radiative heat flux in the
background plasma (see Figure 1). The second term represents
a radiative diffusion across the flux tube due to temperature
differences between the flux tube and external plasma. In
Section 3.2, we will discuss the implications of including
radiative heating in the flux tube model. Adiabatic evolution
occurs when =dS dt 0.

2.2. Flux Tube Initial Conditions

In most of what follows, we operate under the simplifying
assumption that large-scale, turbulent convective motions have

built perfectly toroidal flux tubes initially in thermal equili-
brium (hereafter TEQ) with the background fluid. The
condition of TEQ deviates from the state of neutral buoyancy
(r r=e ) often used in TFT simulations for stars with
convectively stable radiative interiors (e.g., Caligari
et al. 1998; Granzer et al. 2000; Holzwarth & Schüssler 2001;
Weber et al. 2011). Within the long-favored solar interface
dynamo paradigm, it is assumed that toroidal magnetic fields
are amplified and stored in the stably stratified convective
overshoot/tachocline region. Even if magnetic flux tubes were
built in this region in TEQ, the subadiabatic stratification of the
radiative interior would cool the tube as it rose through the
region, eventually achieving a state of neutral buoyancy (e.g.,
Moreno-Insertis et al. 1992). For stars with fully convective
interiors,though, it is difficult to imagine a scenario where a
flux tube may achieve neutral buoyancy. To that end, we
assume that our flux tubes are in TEQ with the surrounding
fluid, inducing a density deficit,

r r r
p

- =
B

p8
, 7e e

e
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rendering the tube initially buoyant. The ratio of r pe e increases
approaching the stellar surface (see Figure 1). Therefore, flux
tubes generated in shallower layers will be more buoyant than
those generated deeper.
For the purposes of this paper, we are interested in studying

magnetic flux tubes that may give rise to starspots. Simulations
suggest that dynamo action in fully convective stars can
achievekilogauss-strength magnetic fields, roughly in equipar-
tition with convective motions, without a tachocline region
(e.g., Dobler et al. 2006; Browning 2008; Yadav et al. 2015b).
To rise toward the surface without experiencing significant
downward pumping by convection, the magnetic field strength
must exceed a critical level such that the buoyancy of the flux
tube dominates the downward drag force from the convective
flows. An estimate of this critical field strength is a few times
the equipartition value, given by B H a Bc p

1 2
eq( ) (see, e.g.,

Fan et al. 2003), where pr=B v4 ceq . For perspective, the
equipartition field strength varies with depth, but is typically
between 2 and 10 kG. Below Bc, flux tubes may become
severely distorted by convection, unable to retain cohesion. It is
therefore likely that only the most extreme, high field strength
events in the dynamo-generated magnetic field

Figure 1. Profiles of - Frad· (left axis) and r pe e (right axis) across our
domain of interest from 0.5R to 0.95R. Radiative heating decreases across the
layer,while r pe e, which is directly proportional to the buoyancy of the flux
tube, increases toward the surface.
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probabilitydensity functionbecome buoyant enough to make
the journey toward the surface, as suggested by Nelson
et al. (2013).

There are also limits on how large the dynamo-generated
magnetic field can become. To explain the observed inflation of
some low-mass stellar radii compared to 1D structure models,
the presence of strong 1–100MG fields has been suggested
(e.g., Mullan & MacDonald 2001; Feiden & Chaboyer 2014).
However, for such extreme magnetic field values, Browning
et al. (2016) have shown that large-scale flux tubes (i.e., larger
cross-sectional radius a) will rise to the surface faster than they
can plausibly be generated by large-scale convective eddies.
Furthermore, the dissipative ohmic heating associated with a
small-scale MG field (i.e., smaller a) may exceed the
luminosity of the star.

In light of these magnetic field constraints, we have chosen
to investigate flux tubes of =B 30 2000 – kG to capture both the
lower and higher end of the magnetic field strength range.
Within this bound, we present simulations at six discreet values
of =B 300 , 40, 60, 80, 100, and 200 kG. As the flux tube
traverses the convection zone, the magnetic field strength
decreases proportionally to the density profile rµ aB (see,
e.g., Fan 2001; Cheung et al. 2010; Pinto & Brun 2013). This
relation is derived on the assumption that both the mass and
magnetic flux of the tube are conserved. An exponent a = 1 is
expected for tubes that expand as they rise without changing
length, while smaller values are expected if the tube is
substantially stretched. Assuming a ~ 1, such initial fields
imply magnetic field strengths of about an order of magnitude
less at the simulation upper boundary (0.95R), and two orders
of magnitude at 0.99R, giving rise to tubes at this depth of
300–2000 G. If the flux tubes survive the remaining 0.01R
without significant shredding by convective motions or
depletion of magnetic field, the legs of the loop will intersect
with the photosphere. Radiative cooling of the plasma inside
the tube in combination with the strong superadiabatic gradient
could initiate the process of “convective collapse.”This
intensifies the flux tube to higher magnetic field strengths,
giving rise to cooler regions marked by suppressed convection,
such as starspots, pores, and faculae (see, e.g., Parker 1978;
Spruit 1979; Spruit & Zweibel 1979).

Flux tubes are initiated at two different depths, 0.5R and
0.75R, in order to sample the differing convective flow pattern
and differential rotation structure with depth. At such depths,
the magnetic field strength in equipartition with the rms radial
downflows is ∼8and ∼6 kG, respectively. Therefore, at 0.5R,
the range of B0 we consider is ∼(4–25)Beq and ∼(1–5.5)Bc. At a
depth of 0.75R, B0 is ∼(5–33)Beq and ∼(1.5–10)Bc. Hence,
fields significantly weaker than those considered here would
likely be highly susceptible to downward magnetic pumping.
The initial latitude is also varied from 0° to 60° in both
hemispheres, with 1° intervals from0° to15°and 5° intervals
from 15° to 60°.

A constraint of the TFT approximation requires that
a H 0.1p in the region where the flux tube is initiated (e.g.,

Fan et al. 1993). The pressure scale height ~Hp 1.7´109 cm
at 0.75R, indicating that the maximum allowable initial cross-
sectional radius of the flux tube at this height is 1.7´ 108 cm.
Assuming that the total flux of the tube remains constant, given
by pF = B a2, the magnetic flux ranges from 2.72´1021 Mx
for 30 kG tubes to 1.82´1022 Mx for 200 kG tubes. This range
of magnetic flux is typical of active regions found on the Sun

(e.g., Zwaan 1987). However, the total unsigned magnetic flux
of some active G, K, and Mdwarfs can exceed that of solar
disk averages by upwardof 3 orders of magnitude (Pevtsov
et al. 2003). The contribution to the total magnetic flux from
starspots is a function of the area, magnetic field strength, and
number of individual starspot regions. The larger total surface
flux for later spectral types could be explained in part by
starspots of roughly the same magnetic field strength as the Sun
covering a larger stellar surface area, or spots of stronger
magnetic fields covering a similar stellar surface area as
observed on the Sun. If fully convective stars indeed have a
greater spot coverage than solar-type stars, then the former
scenario may be more likely (for other observational constraints
on this point, see, e.g., Reiners et al. 2009). This could be
achieved by the flux tubes we model if many individual tubes
appear at the surface distributed randomly on the star, or if
bunches of individual flux tubes rise to create extended dark
spots of suppressed convection.
To keep our investigation here computationally tractable, we

only perform simulations where = ´a 1.7 108 cm. This value
is rather arbitrary, but again, itis the maximum allowable a
under the TFT approximation at 0.75R. As the drag force acting
on the flux tube is proportional to a, this ensures that all flux
tubes initiated at the same depth will experience a drag force of
roughly the same magnitude early in their evolution.
Furthermore, the cross-sectional radius a ought to remain
small across the domain, ideally less than a few times the
pressure scale height Hp. As the flux tube nears the surface, the
cross-sectional radius expands quickly due to the more rapid
decrease of pressure and density of the external plasma. As a
result, we stop our simulations once the flux tube has reached

R0.95 , operating under the assumption that the rise time and
trajectory through the remaining R0.05 arenegligible com-
pared to the total rise.
In Sections 3.1 and 3.2, we study, respectively, how the

evolution of flux tubes rising in a quiescent convection zone
responds to the choice of initial internal rotation rate fv 0 and the
addition of radiative heating. To facilitate comparison to
previous TFT simulations, we briefly discuss the difference
between flux tubes initiated in mechanical equilibrium and
those initiated in thermal equilibrium in Section 3.3. The results
of our flux tube simulations incorporating a convective flow
field are discussed in Section 4.

2.3. Convective Velocity Field

To capture the influence of global-scale convection on flux
emergence in a fully convective star, a convective flow field
computed separately from the TFT simulations is incorporated
through the aerodynamic drag force acting on each flux tube
segment (last term in Equation (1)). We use the anelastic
spherical harmonic (ASH) code, which solves the 3D MHD
equations within the anelastic approximation. The progenitor
case of the velocity field we use here is identical to the
hydrodynamic simulation of Case C in Browning (2008).
Representative of fluid motions in fully convective stars, this
ASH simulation captures giant-cell convection and the
associated mean flows such as differential rotation in a rotating
spherical domain spanning from 0.10R to 0.97R, with R the
total stellar radius of 2.013´1010 cm. ASH is a pseudo-spectral
code, here resolved by a grid of 127 points in r, 256 points in θ,
and 512 points in f.
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An instantaneous view of the radial velocity field at three
different radii is shown in Figure 2. Typical of stratified
convection, broad upflows coexist with narrower downflows.
There is a hierarchy of convective structures, with smaller
downflow plumes at larger radii merging to form broader flows
as they descend. Low-latitude downflow lanes have a tendency
to align with the rotation axis, while the distribution is more
isotropic near the poles. The differential rotation established in
the hydrodynamic simulation exhibits longitudinal velocity
contours nearly parallel to the rotation axis, shown in
Figure 3(a), in keeping with the Taylor–Proudman constraint.
The angular velocity contrast at the surface between the equator
and 60° is DW W ~ 22%0 , comparable to the solar angular
velocity contrast of DW W ~ 25%0 . When magnetism is
included in the ASH simulations of Browning (2008), it is
found that the differential rotation is quenched, with an angular
velocity contrast of DW W ~ 2%0 . This result is in keeping
with other 3D MHD simulations of low-mass stars (e.g., Yadav
et al. 2015b) and is likewise in agreement with observations
(e.g., Morin et al. 2008; Davenport et al. 2015).

It is likely that the strong magnetic field strengths >B B0 eq
we use for our simulations could quench the differential
rotation, reducing the angular velocity contrast to nearly that of
a solid body. For the purposes of this paper, we wish to
examine how the evolution of flux tubes may change when
subjected to a convection velocity field with varying degrees of
angular velocity contrast. Rather than perform multiple
simulations, we retain only the time-varying radial and
latitudinal components of the original hydrodynamic ASH
simulation. The azimuthal velocity field is then averaged over
time and longitude, denoted by fv̂ , and the following equation
is applied to obtain a new differential rotation profile with the
desired angular velocity contrast:
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where DW W0 new( )∣ and DW W0 orig( )∣ are the angular velocity
contrasts of the new and original differential rotation profile,
respectively. This formulation centers the reduction/increase in
the differential rotation profile around W0 so that it will
approach solid-body rotation at all depths and latitudes as
DW W0 is reduced. For each time step of the TFT simulation, a
temporal and three-dimensional spatial interpolation is per-
formed to extract the flow velocity components at the location r
of each mesh point along the tube. A two-dimensional spatial
interpolation in r and θ is performed on fv̂ to provide the
longitudinal flow at each flux tube mesh point.
Performing simulations in this way ensures that the only

difference introduced comes from the applied differential
rotation profile. We recognize that a more straightforward
approach would be to use full 3D velocity fields from multiple
simulations exhibiting varying degrees of angular velocity
contrast. However, the approach taken here allows for more

Figure 2. Radial velocity vr snapshots on spherical surfaces at three depths
taken at the same instant, shown in Mollweide projection. Upflows are
rendered in red tones, and downflows in blue; saturation values are indicated.
Flows are stronger and on smaller spatial scales near the surface than they are at
depth.

Figure 3. (a) Meridional plot of the longitudinal velocity fv̂ for the fast
differential rotation profile, averaged over ∼460 days with contour intervals
every 10 m s−1 around zero relative to the rotating frame. Dashed lines are at
radii of 0.5R and 0.75R. (b) Angular velocity Ŵ averaged over the same time
interval as a function of radius along indicated latitudinal cuts for the fast
(DW W ~ 22%0 ) differential rotation profileand the slow (DW W ~ 2%0 )
differential rotation profile approximated using Equation (8).
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direct comparison between TFT simulations, removing any
effects that may arise because of stochastic variations in the
radial vr and latitudinal qv velocity fields. Figure 3(b) shows the
angular velocity Ŵ (nHz) from the original ASH hydrodynamic
case as a function of radius for latitudinal cuts at 0°, 45°, and
60°. Shown on the same plot is the angular velocity Ŵ
approximated using Equation (8) for a contrast of
DW W ~ 2%0 . This simplistic approach creates a differential
rotation profile very similar to Case Cm in Browning (2008)
with the same angular velocity contrast of ~2%, where the
presence of equipartition-strength magnetic fields quenches the
differential rotation. The presence of magnetic fields in Case
Cm does affect the distribution of angular momentum.
However, we note that the amplitudes of vr shown in Figure 2
are commensurate with Case Cm in Browning (2008).
Furthermore, both the hydrodynamic simulation we use here
and Case Cm exhibit a similar pattern of convective cells,
including a hierarchy and alignment of convective structures
with the rotation axis and isotropic cells near the poles.

In order to sample different intervals of the time-varying
velocity field, we perform three ensemble simulations. Flux
tubes in each ensemble are initialized at the same moment and
are advected by the exact same time-varying flow field, but
evolve independently of each other. Each ensemble is then
composed of 1176 flux tubes, one tube for each of the possible
combinations of B0, q0, r0, and applied differential rotation
profile. This equates to a total number of 3528 flux tubes
analyzed in this study that evolve with the effects of
convection. The initialization times for each of the three
different ensembles are arbitrary, but are at least separated by
∼200 days, similar to a convective turnover time in the mid-
convection zone. In Section 4, we will compare the difference
between the two differential rotation profiles shown in Figure 3
on flux tube evolution. We will often refer to the two profiles as
fast (f) and slow (s), corresponding to angular velocity contrasts
DW W0 of ∼22% and ∼2%, respectively.

For simplicity in referring to a set of simulations with
particular initial conditions, we have a adopted a naming

scheme given in Table 1. For example, the Case ATLf
simulations discussed briefly in Section 3.2 refer to flux tubes
that evolve adiabatically (A), are initially in thermal equili-
brium (T), and have an internal azimuthal speed fv 0 corresp-
onding to the local longitudinal velocity fv̂ of the fast
differential rotation profile (Lf). The Case TLsC simulations
discussed in Section 4 correspond to flux tubes that evolve with
the influence of radiative heating, where the tube is initially in
thermal equilibrium (T) and corotating with the slow differ-
ential rotation profile (Ls). The application of the suffix C
indicates the presence of time-varying convective flows, where
the applied longitudinal velocity profile fv̂ always corresponds
to either the slow or fast profile as indicated.

3. FLUX TUBES IN A QUIESCENT CONVECTIVE
INTERIOR

3.1. Dynamic Evolution: Toward Horizontal Force Balance

Before we examine the results from flux tube simulations
allowed to evolve in a convective flow field, it is instructive to
first study how axisymmetric flux tubes evolve in the quiescent
interior of a fully convective star. Figure 4 depicts the rise of
two low-latitude, Case T0 flux tubes with initial magnetic field
strengths and depths of (a) =B 300 kG, =r R0.50 and (b)

=B 2000 kG, =r R0.750 . The most striking feature is the
parallel motion of the flux tube to the rotation axis.
There are four main forces that govern flux tube evolution:

buoyancy, magnetic tension, aerodynamic drag, and the
Coriolis force. The initial condition of TEQ renders the flux
tube buoyant. An inward-directed (toward rotation axis)
magnetic tension (curvature) force FT partially balances the
horizontal component of the radially directed buoyancy force
FB. The comparative magnitude of these two forces varies with
depth r and latitude θ. The initial ratio of the horizontal
components of the buoyancy force to the magnetic tension
force is given by

⎡
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where θ is the latitude, and we have used Equation (7) and the
fact that the curvature vector k has a magnitude equal to the
inverse of the distance from the rotation axis. Note that this
ratio is independent of the magnetic field strength or magnetic
fluxand is largest for low-latitude flux tubes in shallower
layers of the convection zone. At depths of 0.5R and 0.75R for
an initial latitude of 5° as in Figure 4, the ratio F FB T is ∼1.5
and ∼4.4, respectively. For comparison, a flux tube of the same

Table 1
Flux Tube Simulation Parameters

Case Parameters

T0 TEQ, =fv 00 , Rad. Heat.

TL TEQ, =f fv v ℓ0 , Rad. Heat.

ATL TEQ, =f fv v ℓ0 , Adiabatic

THE TEQ, =f fv v he0 , Rad. Heat.

M MEQ, Rad. Heat.

f Fast Diff. Rot., DW W ~ 22%0

s Slow Diff. Rot., DW W ~ 2%0

C Indicates convective field

Note.Flux tubes in TEQ have a density deficit following Equation (7), with an
internal azimuthal speed (1) =fv 00 corotating with W0; (2) =f fv v ℓ0

corotating with the local longitudinal velocity fv̂ ,corresponding to either the
fast or slow differential rotation profile;or (3) =f fv v he0 , the azimuthal
velocity required for the flux tube to be in horizontal force equilibrium
following Equation (12). Those in MEQ have a neutral buoyancy and a
prograde fv 0 following Moreno-Insertis et al. (1992). Flux tubes evolve either
with radiative heating following Equation (6) or adiabatically such that

=dS dt 0. The presence of an applied velocity field (see Section 2.3) is
represented by C.

Figure 4. Time evolution of Case T0 flux tubes with q = 50 °. Inner and outer
mesh spheres represent surfaces of constant radius at r0 and 0.95R. Flux tubes
are shown at four instances: initial position (red), 50% in time through the total
rise (blue), 75% (green), and once reaching the simulation upper boundary
(black). A 3D extent is applied to the tube according to the local cross-sectional
radius. Evolution of the flux tube is axisymmetric, with the trajectory largely
parallel to the rotation axis.
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B0 at 0.5R in our 0.3Me star has a magnetic tension force ∼5
times larger than at the base of the solar convection zone.

The initial force balance of the flux tube is also sensitive to
the Coriolis force. We consider two plausible scenarios for the
initial longitudinal velocity within the tube. In one, the plasma
inside the flux tube is corotating with the star such that =fv 00
relative to the rotating reference frame (Case T0). In the other,
the toroidal flux tube is built corotating with the local
differential rotation. In panels (a) and (c) of Figure 5, we
show the horizontal force balance for flux tubes initially
corotating with the star (Case T0), with panels (b) and (d)
showing the same quantities for flux tubes given an initial fv 0
corresponding to the fast differential rotation profile
(Case TLf).

Figure 5 indicates that the flux tubes tend to evolve toward a
state of horizontal force equilibrium. Upon approaching
horizontal equilibrium, the motion of the axisymmetric flux
ring turns largely parallel to the rotation axis due to the
unbalanced vertical component of the buoyancy force. Figure 6
shows the trajectories of some Case T0 and TLf flux tubes
initiated at 0.75R, again illustrating the motion parallel to the
rotation axis. Similar to the axisymmetric rising flux rings of
Choudhuri & Gilman (1987) initiated in TEQ, we find that
damped oscillations, particularly in the radial and horizontal
directions, can take place as the tube rises before the sum of the
forces come into balance in the horizontal plane. In the next
few paragraphs, we assess in more detail the dynamics depicted
in Figures 5 and 6.

Near the equator and at shallower depths, the ratio given in
Equation (9) is greater than unity. Assuming that the flux tube
initially rotates at the same rate as the star (Case T0), it will
immediately move outward (away from rotation axis) due to
the greater buoyancy force compared to tension. The outward
motion at 0.75R is much more pronounced than at 0.5R
because of the greater buoyancy force there. We do not include

flux tubes initiated at 0.5R in Figure 6 because the horizontal
oscillations are much smaller in amplitude, and the tubes
deviate little from parallel motion. This is a result of the smaller
ratio of F FB T . Conservation of angular momentum implies that
a retrograde plasma flow is established inside the flux tube as it
moves outward, inducing an inward-directed Coriolis force. As
the tube evolves, an equilibrium of forces is established in the
horizontal plane. Once this occurs, the motion of the flux tube
ceases in the horizontal direction, rising parallel to the rotation
axis. For the flux tubes shown in Figure 5, only near our
simulation upper boundary does the horizontal velocity again
increase slightly in response to a diminished Coriolis force
compared to the buoyancy force in the horizontal plane. If the
ratio of <F F 1B T because the tube is in deeper layers and/or
the distance from the rotation axis is small, the tube will move
initially inward toward the rotation axis, inducing a prograde
flow inside the tube. It will continue to move inward until the
forces roughly balance and motion parallel to the rotation axis
commences. Within the parameter space we study, such a
scenario is realized for tubes initiated with latitudes 35° at
0.5R. While the ratio of F FB T is independent of B0, the
difference between FB and FT will increase with increasing
B0and will subsequently alter the depth in the convection zone
at which the horizontal forces equilibrate and the trajectory
turns poleward.
Choudhuri & Gilman (1987) calculate a W2 0 frequency of

oscillation for uniformly buoyant, axisymmetric flux tubes,
reminiscent of inertial oscillations in a rotating fluid. This
frequency corresponds to a period of 14 days for our
simulations, agreeing roughly with the oscillation periods in
Figure 5. The greater the excess of the initial outward forces to
the inward forces, the larger the oscillation amplitude and
nearer the surface the flux tube moves horizontally before
executing horizontal oscillations. At 0.75R, the Case TLf flux
tubes move outward into shallower layers as compared to the

Figure 5. Time evolution of the horizontal force balance for =B 800 kG, q = 50 ° flux tubes. The sum of the horizontal forces oscillates around zero until achieving
equilibrium. Thereafter the trajectory turns mostly parallel to the rotation axis. The force components are labeled as the total, buoyancy (FB), Coriolis force (FC),
tension (FT), and drag (FD). Flux tubes in panels (c) and (d) are also depicted in Figure 6(b).
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Case T0 flux tubes before the trajectory turns parallel to the
rotation axis (see Figure 6). This is a result of the large fv 0 of
the Case TLf tubes arising from the assumed corotation with
the fast prograde differential rotation. The flux tube must move
further outward, eventually establishing a retrograde flow
inside the tube before the inward and outward forces come into
balance. For example, the Case T0 flux tube described in
Figure 5(c) and also shown in Figure 6(b) is brought ∼0.03R
outward from 0.75R before oscillations are initiated. The Case
TLf flux tube described in Figures 5(d) and 6(b) is brought out
further to ∼0.06R from 0.75R before oscillations begin. This
faster motion also generates a substantial drag force opposite
the direction of motion within the first ∼10 days (see
Figure 5(d)). Even if >F F 1B T , some flux tubes can execute
an inward trajectory before moving poleward due to a
retrograde fv 0 assumed from corotation with the differential
rotation. Such a scenario occurs for tubes initiated at 0.5R near
the equatorial region (see Figure 5(b)) and also for higher
latitudes at 0.75R (see Figure 6). In summary, the difference in
behavior between the Case T0 and Case TLf (or TLs) flux tubes
in the quiescent convective interior is solely due to the

prescribed fv 0 inside the tube and the subsequent force balance
established. This study aids in our description of flux tube
evolution in later sections.
The archetypal notion of rising Ω-shaped loops often

discussed in the context of solar magnetic flux emergence
(see,e.g.,review by Fan 2009) is not realized in simulations
described in this section. The condition of TEQ means that the
tube will never initially be in a state of perfect force
balanceand will drift away uniformly from its initial position.
This can be partially mitigated in stars with stably stratified
interiors by anchoring portions of the already buoyant tube in
the subadiabatic overshoot region (see Fan et al. 1993; Caligari
et al. 1998). As we will show in Section 4, modulation of the
flux tube by radial convective motions helps to pin portions of
the tube to deeper layers. Buoyantly rising loops may escape
toward the surface between downdrafts or be promoted toward
the surface by strong upflows.
It is also clear that the buoyant flux tubes discussed in this

section attempt to achieve a state of horizontal equilibrium
early in their evolution. Especially in the upper convection
zone, the initial imbalance of horizontal forces can bring the
tube into shallower layers before a horizontal equilibrium is
found. In stars with strong differential rotation, assuming
thatthe tubes are built corotating with the local plasma, this
will bring the tube outward into layers with increasingly
prograde motion. While the azimuthal drag force has no effect
on axisymmetric flux tubes in our formulation (other than the
prescribed fv 0 here), tubes that develop distinct buoyantly
rising loops due to convective motions could be pushed
prograde through the drag force acting on the loop legs. This
additional supply of angular momentum will reduce the
poleward deflection of the rising loopand may help to achieve
lower-latitude flux emergence (see, e.g., Fan et al. 1994). In
Section 4, we will assume that the flux tube is built corotating
at the same rate as the surrounding plasma, adopting both a fast
differential rotation profile and a slow profile rotating closer to
the solid-body rate (see Figure 3(b)). The latter is predicted by
3D MHD simulations of dynamo action in fully convective
stars and inferred from observations of low-mass stars.

3.2. Effects of Radiative Heating

In reality, it is likely that flux tubes neither rise perfectly
adiabatically nor adjust instantly to the temperature of their
surroundings. Rather, there is a rate at which heat flows in or
out of the tube, given here by Equation (6). Weber & Fan
(2015) have shown that additional heating of the flux tube in
the lower convection zone provided by the deviation in the
mean temperature gradient from radiative equilibrium (i.e.,
 ¹ rad) can significantly enhance the buoyancy of flux
tubes. Additionally, there is a diffusion of heat across the flux
tube due to the temperature differences between the flux tube
and the external plasma. Owing to the lower thermal diffusivity
(k k r= ce pdiff ) in fully convective stars compared to earlier
spectral types, the radiative diffusion timescale t k= a2

2
diff

(corresponding to the second term on the right-hand side of
Equation (6)) across a tube of radius a∼108 cm is of order
∼1012 s at 0.5R, much longer than the rise times of the flux
tubes in our simulation by ∼4–5 orders of magnitude (see
Section 4.2), and is therefore negligible. Since we do include a
radiative heating term in our model, we briefly examine its
effects here.

Figure 6. Trajectories of flux tubes initiated at 0.75R, showing both Case T0
(black) and Case TLf (red). A strong prograde fv 0 flow inside the Case TLf flux
tubes can cause (via induced Coriolis forces) the tubes to move horizontally
outward into shallower layers at lower latitudesand deeper layers at higher
latitudes due to a retrograde flow.

9

The Astrophysical Journal, 827:95 (20pp), 2016 August 20 Weber & Browning



We can assess the relative importance of radiative heating by
comparing the growth of the buoyancy r r rD = -e caused by
radiative heating to that from the adiabatic expansion of the
flux tube rising through a superadiabatically stratified medium
(see Fan & Fisher 1996):
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where d =  - ad, the excess of the background temperature
gradient above the adiabatic value, and vr is the radial velocity
of the flux tube cross-section. The contribution to the buoyancy
evolution from radiative heating is dependent on radius
onlyand therefore the same for all flux tubes at the same depth.

Figure 7 depicts the contributions to the buoyancy evolution
of the flux tube from both radiative heating and adiabatic
expansion (Equations (10) and (11), respectively). As flux
tubes with weaker magnetic field strengths are less buoyant
(i.e., smaller rD ), the boost to the buoyancy evolution from the
uniform radiative heating has a comparatively stronger effect.
In the upper 75% of the convection zone, radiative heating has
minimal influence on the buoyancy evolution of the flux tube.
For very lowlatitude(q = 10 °), 30 kG flux tubes, radiative
heating reduces the ∼325-day rise time of the adiabatically
evolving case (Case ATLf) by ∼10 days (Case TLf). The rise
of these same flux tubes initiated at 0.5Risreduced by at most
∼140 days (Case TLf) from the ∼700-day (Case ATLf)
adiabatic rise time. The majority of the buoyancy increase from
radiative heating for tubes at this depth occurs across a short
distance of ∼0.03R upward from 0.5R (see Figure 7). At both
depths, radiative heating has a negligible effect on the rise of
100–200 kG flux tubes. While the incorporation of radiative
heating to the model does change the rise time compared to the
adiabatically evolving case in some circumstances, we find that
the oscillations and horizontal force balance discussed in
Section 3.1 are largely unaffected.

As a technical detail, in order to plot Equation (11) at the
flux tube cross-section on a y-log axis, it is necessary to
eliminate the radial oscillations the flux tube executes. We
achieve this by performing simulations where the initial flux

tube is in horizontal force balance between the Coriolis,
buoyancy, and tension forces (Case THE). This entails
adopting a slightly modified initial azimuthal velocity
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By eliminating the oscillations, the rise time and trajectory of
the flux tube are changed somewhat;however, the relevant
conclusion remains the same,namely, that the evolution of
even the weakest flux tube we consider is mostly adiabatic,
with the exception of a short distance across the deep interior.
For this purposes of this paper, we are mostly interested in

assessing how turbulent convective flows influence the buoyant
rise of active-region-scale flux tubes in a fully convective star.
In the following sections, we will include radiative heating in
all simulations, comparing flux tubes rising in a quiescent
convection zone to those allowed to evolve under the influence
of convective flows.

3.3. A Note on Flux Tubes Initially in Mechanical Equilibrium

As mentioned in Section 2.2, flux tubes originating in an
isothermal radiative interior will cool as they rise through the
region, achieving neutral buoyancy. If the tube is located
outside the equatorial plane, the poleward component of the
unbalanced magnetic tension will force the tube to move
latitudinally, closer to the rotation axis. This in turn induces a
prograde flow of plasma inside the tube due to the conservation
of angular momentum. Eventually a state will be reached where
the buoyancy force vanishes and the inward-directed magnetic
tension is balanced by the now outward-directed Coriolis force.
This is the state of mechanical equilibrium (hereafter MEQ),
wherein all forces acting on the neutrally buoyant flux tube in
all directions have come to a state of equilibrium (see, e.g.,
Moreno-Insertis et al. 1992). The flux tube may then execute
oscillations around this equilibrium, with a large body of work
devoted to studying the stability of flux tubes in MEQ under a
variety of conditions and geometries (e.g., Spruit & van
Ballegooijen 1982; Ferriz-Mas & Schüssler 1993, 1995; Cali-
gari et al. 1995).
In the solar context, perturbations to flux tubes in MEQ can

result in undular magnetic buoyancy instabilities (i.e.,
m=1–3). Portions of the tube then anchor in the overshoot
region as material drains from the crests to the troughs,
promoting buoyantly rising loops and sinking of the troughs
into the convectively stable interior (e.g., Caligari et al. 1998;
Weber et al. 2011). However, if the radius of curvature is too
small, as would be the case if the tube is initiated at high
latitudes or near the radiative zone/convection zone interface in
stars with small radiative cores, the tube may still slip poleward
if m=0 (axisymmetric flux ring) is the fastest-growing
unstable mode, driven by a dominant magnetic tension force
compared to buoyancy (e.g., Granzer et al. 2000; Holzwarth &
Schüssler 2001). We find a similar behavior for B 800 kG
tubes initiated at 0.75Rand B 1000 kG initiated at 0.5R, if
the initial condition of MEQ (Case M) is applied. In these
simulations, we have included radiative heating following the
formulation given in Section 2.1 and used the cross-sectional
radius = ´a 1.7 100

8 cm. Above this threshold, the flux

Figure 7. Growth of buoyancy resulting from adiabatic expansion of Case
THE, =B 300 kG, q = 50 ° flux tube cross-sections (Equation (11); solid lines)
compared to that resulting from radiative heating (Equation (10); dashed line).
Flux tube evolution is adiabatic across most of the computational domain. Solid
curves are plotted once the tube has moved radially 0.1 Mm (∼0.002R) from r0.

10

The Astrophysical Journal, 827:95 (20pp), 2016 August 20 Weber & Browning



tubes develop significant undular instabilities with low-order
unstable modes if the radius of curvature is large enough.
Figure 8 shows the time evolution of two Case M flux tubes
rising through the 0.3Me convective envelope that have
developed dominant m=1 (Figure 8(a)) and m=2
(Figure 8(b)) undular instabilities.

We think it more likely that flux tubes are built in fully
convective stars in a state of TEQ rather than MEQ, as
discussed in Section 2.2. The choice between these two initial
conditions will alter the subsequent evolution of the flux tubes
and balance between the relevant forces, having significant
effects on properties such as rise times, latitude of emergence,
and development of Ω-shaped loops, or lack thereof. Depend-
ing on the initial latitude, depth, or magnetic field strength, flux
tubes initiated in MEQ can take at most an order of magnitude
longer to rise than their counterparts initiated in TEQ. While
tubes in TEQ are immediately buoyant with a density deficit
following Equation (7), those in MEQ are subject to the growth
rate of the magnetic buoyancy instability. The apices then rise
toward the surface as bending of the tube drains material out of
the apex to the trough, further depleting the density there and
subsequently increasing the buoyancy.

The choice of TEQ versus MEQ may also change the rise
times reported in Browning et al. (2016) somewhat for the
extreme magnetic fields of 10 106 7– G. In that paper, we
performed the TFT simulations primarily to confirm that the
rise time varies inversely to the cross-sectional radius of the
flux tube (see Figure 5 in that paper). This result is robustand
independent of the choice of MEQ or TEQ at moderate rotation
rates (i.e., W10 0) for the magnetic fields of 10 106 7– G studied.

For the parameter space explored here, we note that flux
tubes initialized in both TEQ and MEQ exhibit strong poleward
deflection, even at the very modest solar rotation rate. As
pointed out in Section 3.1, our flux tubes in TEQ do exhibit
some degree of radial motion (see Figure 6) ultimately
determined by the horizontal forces. Once a balance in this
direction is achieved, the flux tubes then turn poleward. This is
in stark contrast to the radial trajectories of flux tubes initialized
in MEQ in the quiescent solar convection zone described in
Weber et al. (2011, 2013b), especially for the strongest
magnetic field strengths of 60–100 kG. In those papers, the
majority of flux tubes develop undular instabilities, resulting in
troughs that effectively “anchor” in the subadiabatic overshoot
region. This keeps the flux tube from migrating too far
poleward before a buoyantly rising loop reaches the near-
surface region. If m=0 is the fastest-growing unstable mode,
the tube may not anchor, freely floating with motion parallel to
the rotation axis and emerging at higher latitudes than

expected, as shown in Weber et al. (2011) for some weaker
B0 flux tubes.
Futhermore, as previously mentioned, the choice of TEQ or

MEQ will make a difference in the dynamic evolution of forces
acting on the flux tube. The TFT simulations of Fan et al.
(1993, 1994), for instance, begin with flux tubes in TEQ in a
solar convection zone, but must embed portions of them in a
strongly subadiabatic overshoot region to reinforce anchoring.
Comparing the TEQ flux tubes of Fan et al. (1993) and MEQ
flux tubes of Weber et al. (2013b), the emergence latitudes of
buoyantly rising loops are fairly commensurate, but can be
larger by up to 10° for the B0=30–50 kG, q 50 ° TEQ flux
tubes of Fan et al. (1993). In the solar context, Caligari et al.
(1998) discuss in detail how the choice between TEQ and MEQ
affects the anchoring of the flux tube, geometrical asymmetries
of the rising loop, and the asymmetry between the magnetic
field strength in the leading and following legs of the
rising loop.

4. FLUX TUBES IN TURBULENT CONVECTION

4.1. Qualitative Description

The journey of an active-region-scale flux tube from its
region of generation to the nearsurface is in part shaped by the
local and mean flows it encounters. Previous works have
sufficiently demonstrated that strong downflows can pin
portions of the flux tube to deeper layers, while upflows may
aid in boosting portions toward the surface (e.g., Fan
et al. 2003; Jouve & Brun 2009; Weber et al. 2011; Nelson
et al. 2013). In the remainder of this section, we qualitatively
outline how convective motions influence the flux tubes we
simulate here.
Figure 9 shows 3D snapshots of representative flux tubes

initiated at 0.5R and 0.75R at multiple times during their
evolution. The top two rows (Figures 9(a)–(f)) exhibit flux
tubes that have evolved subject to the fast differential rotation
profile (TLfC), with the bottom two rows (Figures 9(g)–(l))
subject to the slow differential rotation profile (TLsC), where
the tubes are assumed to have been built corotating with the
surrounding plasma. All flux tubes in Figure 9 are initialized at
the same timeand therefore experience initially the same time-
varying radial and latitudinal flows. Figure 10 complements the
top row of Figure 9, depicting the time evolution of the same
flux tubes in the fr– plane, as well as the radial flows acting on
each flux tube segment. We have chosen to present Figure 10
only for representative Case TLfC tubes initiated at 0.5R as an
example of how radial convective flows modulate the initial
axisymmetric shape of the flux tube.
For flux tubes of similar cross-sectional radius a, the severity

of the distortion by convective flows increases with decreasing
magnetic field strength (i.e., from right to left in Figure 9, top to
bottom in Figure 10). Simply, tubes of larger magnetic field
have a greater magnetic tension and a stronger buoyancy force
compared to the aerodynamic drag imparted by the turbulent
flows, rendering the tube less susceptible to convection. This
means that tubes of larger B0 evolve more like the axisym-
metric flux tubes in a quiescent medium described in
Section 3.1.
Imprinted on the shape of the flux tube at any moment

areboth the history of convective flows it has encountered and
artifacts from more recent flows. Small perturbations to the
tube from flows in the deeper interior may continue to grow as

Figure 8. Time evolution of flux tubes initially in mechanical equilibrium
(Case M) with q = 50 °. Plotting specifics are the same as Figure 4, except the
azimuthal axis has been rotated so the apex of the tube at the upper boundary is
on the right-hand side. Flux tubes originally in mechanical equilibrium can
develop nonaxisymmetric undular instabilities ( ¹m 0) if the magnetic field
strength and radius of curvature arelarge enough.
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material drains from a peak along the tube to a trough. The
peak will continue to rise toward the surface, sometimes being
boosted by an upflow, while other times pummeled by a strong
downflow. For example, the 30 kG Case TLfC flux tube
initiated at 0.5R, depicted in Figure 9(a) and the bottom row of
Figure 10, develops small undulations in the deep interior that
grow as the peaks along the tube rise into less dense layers. By
the time the fastest-rising peak reaches the upper boundary,
which we will subsequently refer to as the flux tube apex, the
tube has developed multiple loops with troughs that extend to
as deep as 0.6R. A strong downflow passes across the apex of
the flux tube as it nears the surface, creating a double-peaked
feature in the rising loop between ∼0° and 20° longitude in the
last time step, as shown in Figure 10(i).

Even when subjected to convective flows, both Case TLfC
and TLsC flux tubesinitiated at a depth of 0.5R still have a
mean motion that is largely parallel to the rotation axis
(Figure 9, first and third rows). The broader, weaker radial
flows in the mid-convection zone are enough to perturb flux
tubes of weaker B0, creating rising loops with troughs residing
in much deeper layers. However, at this depth, radial flows are
not strong enough to bring the apex radially outward, nor is the
differential rotation profile strong enough to force the loop to
deviate much from parallel motion toward the poles. As the
magnetic field strength B0 of the tube increases, the develop-
ment of loop-like features only begins to occur as the ring-like
tube reaches shallower regions of the convection zone where
the radial motions increase in magnitude and have smaller

spatial scales (see Figure 10). Differential rotation (and the
assumed fv 0 inside the tube) plays only a small role here: the
evolutionsof the 200 kG Case TLfC and TLsC flux tubes
initiated at 0.5R in Figures 9(c) and (i) are nearly
indistinguishable.
Flux tubes originating at 0.75R can evolve differently; in

particular, not all exhibit a mean motion parallel to the rotation
axis. For example, the 30 kG Case TLfC flux tube in
Figure 9(d) and the 200 kG Case TLfC tube in Figure 9(f)
exhibit lower-latitude emergence than their counterparts
evolving in the slow differential rotation profile (see
Figures 9(j) and (l)). This change in evolution is solely due
to the applied differential rotation profile, and likewise the
initial fv 0 inside the tube.
In Section 4.2, we discuss in greater detail the effect the

differential rotation profile has on the rise duration and
emergence latitudes of buoyantly rising loops. We investigate
the ability of convection to suppress the motion of the entire
flux tube in Section 4.3.

4.2. Rise Times, Emergence Latitudes, and Influence of
Differential Rotation

To a zeroth approximation, flux tubes built in TEQ in a low-
mass star rise parallel to the rotation axis rather than radially
outward. However, in some circumstances, initially low-
latitude flux tubes develop buoyant loops thatcan rise more
radially, emerging in the near-equatorial region. Furthermore,

Figure 9. Case TLfC (a)–(f) and TLsC (g)–(l) flux tubes initiated at q = 50 ° with initial depths of 0.5R and 0.75R, represented by the inner mesh sphere of constant r0.
The magnetic field strength B0 of the flux tube is the same for each column. The tube is plotted at three different instances, with the colors corresponding to those given
in Figure 4. As in Figure 8, the image has been rotated so the apex of the tube at the upper boundary is on the right-hand side. Convection modulates the rise of the flux
tube, promoting buoyantly rising loops.
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the mean and local flows encountered by the evolving flux tube
can significantly alter the duration of a buoyantly rising loop’s
journey to the surface of the star.

Figures 11 and 12 show the average apex rise times and
emergence latitudes, respectively, for flux tubes evolving in the
time-varying vr and qv convective flow fields with both the fast
(Case TLfC) and slow (Case TLsC) differential rotation profiles
applied. We reiterate that our flux tubes subject to convective
motions are assumed to have been built corotating with the
local differential rotation profile. Each symbol in the plots
represents the quantity for all flux tubes initiated at q0∣ ∣,
averaged over the three ensembles we perform. The corresp-
onding quantities for axisymmetric flux tubes rising through a
quiescent interior are also shownand are also assumed to have
been built corotating with the local differential rotation profile
for a more consistent comparison (Cases TLf and TLs). As our
simulations terminate once some portion of the tube has
reached the simulation upper boundary at 0.95R, we are only
reporting the rise times and emergence latitudes for the fastest-
rising loops in each circumstance.

The major trend that emerges from the average rise times in
Figure 11 is the tendency in most cases for the apex rise to
roughly follow the rise of the axisymmetric flux rings evolving
without convection. Weaker =B 30 400 – kG flux tubes
initiated at low latitudes at 0.5R subject to both differential
rotation profiles (Figures 11(a) and (c)) rise slower than the
same flux tubes rising through a quiescent convection zone.
This is indicative of magnetic pumping, which we further

address in Section 4.3. However, a stronger differential rotation
profile can drastically shorten the rise of initially low-latitude
30–40 kG (Case TLfC) flux tubes originating at 0.75R, as
shown in Figure 11(b) and discussed in more detail below.
Even though convection can modulate the tube, generating

loops that extend over a large portion of the convection zone,
the tendency for portions of the tube to approach horizontal
equilibrium and rise parallel to the rotation axis is robust in
most cases. Figure 12 depicts this trend. The black dashed lines
in Figure 12 plot the emergence latitude at 0.95R expected if
the flux tube rises purely vertically, following the relationship
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where θ is the latitude and rtop is the top of the simulation
domain. For both differential rotation profiles, the 200 kG flux
tubes initiated at 0.75R deviate substantially from the
emergence latitude predicted by Equation (13). Additionally,
30–40 kG flux tubes of q 50 °–15° initiated at the same depth
subject to the fast differential rotation profile are able to emerge
at much lower latitudes than either flux tubes evolving without
convection or the prediction of Equation (13) (see
Figure12(a)).
Phenomenologically, we can explain the reduced rise times

and deflected latitudinal emergence of the 30–40 kG Case
TLfC flux tubes by appealing to the differential rotation profile.
In the upper~25% of the convection zone at low latitudes, the

Figure 10. Evolution of Case TLfC flux tubes (black line, left axis) in the fr– plane with initial latitude q = 50 °, =r 0.50 R, and B0 decreasing from top to bottom.
Snapshots are taken at times as indicated when the apex has reached a height of (left column) 0.61R, (middle column) 0.8R, and (right column) 0.95R, corresponding
to the last time step and the black flux tubes shown in the top row of Figure 9. All flux tubes shown are initialized at the same timeand therefore experience the same
initial flow field. Also plotted is the external radial velocity field vcr (red line, right axis) at the same instant acting on each flux tube segment. The dashed line
represents zero on the vcr axis. This figure clearly shows how strong downflows can modulate the shape of the flux tube.
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Figure 11. Average apex rise duration for flux tubes traveling through both the quiescent interior (represented by lines) and the convective flow field (represented by
symbols) as a function of the absolute value of the initial latitude. Rise times are averaged over three unique flow fields and both hemispheres. The standard deviation,
or spread about the mean, of the average rise times is at most 15% of the average value. A fast differential rotation profile near the equator in shallower depths aids in
significantly shortening the rise time of weak =B 30 400 – kG flux tubes in the near-equatorial region.

Figure 12. Average emergence latitude of the flux tube apex (symbols) as a function of the absolute value of the initial latitude for (a) Case TLfC and (b) Case TLsC.
The thick dashed line represents the emergence latitude if the flux tube were to rise truly parallel to the rotation axis (Equation (13)). Curves depicted in the legend
correspond to flux tubes rising through a quiescent convection zone. Large deviations of motion parallel to the rotation axis for the 30–40 kG Case TLfC tubes are a
result of both the mean and time-varying convective flows, while the deviation for the 200 kG tubes is related strongly to the initial horizontal force imbalance and
vigorous time-varying flows nearer the surface. Bars on the symbols in panel (a) for the 30–40 kG tubes initiated at 0.75R represent the standard deviation. The
standard deviation for the other average values rarely exceeds the size of the symbols.

14

The Astrophysical Journal, 827:95 (20pp), 2016 August 20 Weber & Browning



differential rotation is strongly prograde (see Figure 3(a)). At
this depth, the initial horizontal force imbalance causes the
Case TLfC flux tubes to move outward into shallower layers as
compared to the Case TLsC tubes owing to the larger initially
outward Coriolis force (see discussion in Section 3.1). Buoyant
loops develop from modulation by convection. These loops rise
subject to the prograde azimuthal flow, which supplies angular
momentum as the loop crosses contours of constant fv̂ . The
retrograde flow of plasma along the flux tube expected from
conservation of angular momentum will be reduced, and may
even turn prograde. A prograde azimuthal flow near the apex, if
established, induces outward and equatorward components of
the Coriolis force, accelerating the loop toward the surface and
helping it to emerge at lower latitudes. Furthermore, the
distance the flux tube travels while executing a more radial
trajectory is shorter than a trajectory parallel to the rotation
axis, also reducing the rise time.

We point out that in the absence of convection, Case TLf
flux tubes initiated at 0.75R at low latitudes move horizontally
outward to only ∼0.81R before moving parallel to the rotation
axis (see Figure 6(a)). The departure from the nearly parallel
trajectories of 30–40 kG Case TLfC flux tubes initiated in this
same region is then a result of modulation by the time-varying
flows and the strongly prograde differential rotation. To further
emphasize this, Figure 13 shows a scatter plot of the azimuthal
speed fv attained by the fastest-rising apex of each 30–40 kG
Case TLfC flux tube at 0.95R as a function of emergence
latitude. The drag force from the prograde fv̂ acting on portions
of the rising loop perpendicular to the mean azimuthal flow
field has given the apex a positive azimuthal speed for nearly
all 30–40 kG flux tubes that emerge at latitudes ∣ 25°∣. As the
relevant component of buoyancy that drives parallel motion is
comparatively smaller in 30–40 kG flux tubes, the trajectories
of their rising apices are more easily turned equatorward by the
application of differential rotation. The TFT simulations of Fan
et al. (1994) similarly find that the application of a differential
rotation profile reduced the emergence latitude of buoyantly
rising loops in the solar context.

The 200 kG flux tubes initiated at 0.75R (both Case TLfC
and TLsC) achieve low-latitude emergence in a slightly
different way than the 30–40 kG Case TLfC tubes. The large
excess of the outward forces acting on the flux tube compared
to the inward forces quickly moves the tube outward to  R0.9
before horizontal equilibrium is achieved and the motion turns
parallel to the rotation axis. Subsequently, the emergence
latitude deviates more significantly from what is predicted by
Equation (13). This is visible in Figures 4(b) and 6(c), where
the motion parallel to the rotation axis of the 200 kG flux tube
occurs much closer to the surface. Modulation of the flux tube
by the more vigorous, smaller-scale convection in these layers
perturbs the tube enough to allow portions to reach the upper
boundary before the mean motion of the tube can move
significantly poleward. This effect is not strongly dependent on
differential rotation, and likewise the initial fv 0 established
inside the flux tube. This process also explains the reduced rise
times of initially low-latitude 200 kG flux tubes compared to
the flux tubes rising in a quiescent convection zone in
Figures 11(b) and (d).

4.3. Relative Magnetic Pumping

The flux tube properties reported in Section 4.2 are reflective
of only the fastest-rising loop, assumed to be the progenitor of a
representative starspot region. However, a large portion of the
originally axisymmetric ring may reside in deeper layers, as is
evident inFigure 9. Through interaction with a series of
favorable flows, or by avoiding encounters with strong
downflows, a buoyant loop may rise to the surface faster than
a flux tube traveling through a quiescent interior. Alternatively,
the journey of even the fastest-rising loop may be extended in
time compared to the quiescent case due to pummeling of the
flux tube by downflows.
To quantify the ability of convective flows to suppress the

mean motion of the flux tube, we calculate the average
magnetic field weighted radial depth of the flux tube
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where = = -u s L j N 1j ( ) for = -j N0 ,.., 1 is the frac-
tional arc length along the flux tube, s is the length of the tube
up to a mesh point j from the origin mesh point, L is the total
length of the tube, and N is the number of mesh points
uniformly spaced along L. This quantity á ñr t( ) captures the
depth in the convection zone where the majority of the
magnetic field of the flux tube resides. It places less of a weight
on the magnetic field in shallower depths, which has decreased
in strength as portions of the tube rise and expand. Similar
treatments for magnetic fields in 3D computational domains are
employed in,for example, Tobias et al. (2001) and Abbett
et al. (2004).
Figure 14 compares as a function of time the maximum

radial position rc of representative Case TLfC and TLsC flux
tubes (solid lines) and the corresponding magnetic field
weighted radial position á ñr (triple-dot-dashedlines). In addi-
tion, we show the cross-sectional radial position rnc of the
axisymmetric flux tube (dashed lines) rising through the
quiescent interior with the same initial conditions. This figure
indicates that the majority of the flux tube is confined to deeper
layers than the fastest-rising portion of the tube, while á ñr may

Figure 13. Azimuthal velocity fv of plasma at the apex (reaching 0.95R) of
30–40 kG Case TLfC flux tubes originating at 0.75R (symbols). The azimuthal
velocity fv along the cross-section of the axisymmetric Case TLf flux rings at
0.95R is also shown (lines). In shallower layers, weaker flux tubes of 30–40 kG
that emerge at latitudes 25° have developed a prograde azimuthal speed. Not
shown here, all Case TLfC flux tubes of B 600 kG have an apex fv at the
simulation upper boundary that is retrogradeand commensurate with
conservation of angular momentum.
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deviate more or less from rnc according to the magnetic field
strength B0, depth r0, latitude q0, and angular velocity contrast.

The deviation of á ñr from the depth rnc of the axisymmetric
flux tube rising in a quiescent convection zone is an expression
of the effectiveness of magnetic pumping. To quantify this,
we calculate a relative pumping depth for each individual
flux tube simulation D = á ñ -r r t r tmin nc min( ) ( ), where =tmin

t r t rmin max , max cnc[ ( ( )) ( ( ))]. In other words, we record the
difference between á ñr and rnc at the elapsed time corresp-
onding to whichever flux tube reaches the simulation upper
boundary first, either the flux tube evolving in convective flows
(i.e., rc) or the flux tube evolving without convective motions
(i.e., rnc). For example, the 30 kG Case TLf flux tube depicted
in Figure 14(a) reaches the simulation upper boundary in ∼445
days. This is ∼45 days faster than the same flux tube subject to
convective flows (Case TLfC). In this instance, ~t 445min
days, represented by the vertical dashed line. At tmin, D ~r
0.620R–0.950R=−0.330R, indicating that the Case TLfC
flux tube has been suppressed by convection,i.e., á ñr is
increasing substantially slower than rnc. In Figure 14(b), the
30 kG Case TLsC tube reaches the surface in ∼45 days. This is
∼10 days faster than the equivalent flux tube evolving without
convective flows (Case TLs). In this case, ~t 45min days, with
D ~r 0.858R–0.873R=−0.015R. The average Dr for our
simulations is shown in Figure 15. As in Figures 11 and 12,
each symbol in the plot represents the quantity for all flux tubes
initiated at q0∣ ∣, averaged over the three ensembles we perform.
We emphasize that in the calculation of Dr , we are always
comparing flux tubes with the same fv 0.

Taking Figures 14 and 15 together, it is clear in the deep
interior that the relative magnetic pumping is more efficient for
flux tubes of weaker magnetic field strengths and lower initial
latitudes. Figure 15 demonstrates this comprehensively,
especially when comparing the Case TLsC flux tubes initiated
at both 0.5R and 0.75R in Figures 15(b) and (c), respectively.
At depths of 0.5R, the critical magnetic field strength at which
the magnetic buoyancy roughly equals the downward drag
force from radial convective motions is ~B 30c kG. At weaker
B0, there is a continuous tug-of-war between buoyancy and
convective motions until a loop is lucky enough to rise to the

surface without being pummeled back downward by
convection.
For the plots of rc in Figure 14, we emphasize that we are

always tracing the portion of the flux tube that has the largest
radial distance from the star’s center. As the tube evolves,
various loops will develop over the course of the simulation
that subsequently are pushed downward by convective flows.
As a result, we are not tracking a single loop from the
beginning of the simulation to termination at the upper
boundary. Even at magnetic field strengths close to Bc, the
average magnetic field weighted depth á ñr increases with time
owing to the lack of a stably stratified region to help anchor the
tubeand the unbalanced vertical and poleward force compo-
nents acting on the flux tube as a whole.
The reduced pumping at higher latitudes is in part a

consequence of the larger poleward acceleration due to the
smaller radius of curvature there. Convective flows are not
strong enough to retard the motion as efficiently. The relative
pumping depth is larger at higher latitudes for 30–40 kG flux
tubes initiated at 0.5R evolving in the slow differential rotation
profile (Case TLsC, Figure 15(c)) as compared to those
evolving in the fast differential rotation profile (Case TLfC,
Figure 15(a)). This indicates that the nature of the differential
rotation profile acting on the flux tube as a whole also plays
some role in magnetic pumping.
At initial depths of 0.75R, any substantial pumping is only

seen for the lower-latitude, lower magnetic field strength Case
TLsC flux tubes shown in Figure 15(c). For the Case TLfC flux
tubes initiated at this height, by contrast, the initial imbalance
of the horizontal forces brings the tubes horizontally outward
into shallower layers very quickly (see discussion in
Section 3.1). Magnetic pumping here is not strong enough to
suppress this initial outward motion. As a result, the mean
motions ofthese flux tubes evolve similarly to those that rise
through a quiescent convection zone, with average Dr R∣ ∣
values never greater than 0.04 (and subsequently not shown
here). That is not to say that all portions of the flux tube evolve
in a similar fashion. As discussed in Section 4.2, some
buoyantly rising loops may escape to the surface much quicker
and more radially than their counterparts evolving without

Figure 14. Apex radial position rc (solid line) for flux tubes that evolve in convection, average magnetic field weighted radial position á ñr (dot-dashed line) for the
same tube, and radial position rnc of the cross-section of flux tubes allowed to evolve without convection (dashed line). These are shown for (a) CaseTLf and TLfC
tubes originating at 0.5R and 5°, and (b) CaseTLs and TLsC tubes originating at 0.75R and 40°. Low-latitude, weaker magnetic field strength flux tubes in the deeper
convection zone are pinned down substantially by convection. Vertical dashed lines are referenced in the text (see Section 4.3)and correspond to tmin for the 30 kG
flux tube in the panel.
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convection. A general trend emerges: magnetic pumping is
more efficient for weaker magnetic field strengths, forlower
latitudes, in the deeper interior, and forsmaller angular velocity
contrasts.

5. CONCLUSIONS AND PERSPECTIVES

We have presented the results from simulations of TFTs
embedded in a rotating spherical domain of fluid motions
representative of a 0.3Me fully convective star. Our

simulations are meant to represent how coherent bundles of
initially toroidal magnetic fields with core strengths of B Bc0 ,
where ~B 20 30c – kG, and moderate magnetic flux of
~10 1021 22– Mx may behave as they traverse the convection
zone, interacting with local and mean flows. We recapitulate
our findings in what follows, comment on the comparison to
previous simulations and observations of active regions on
Mdwarfs, and discuss the assumptions made in our model.
Flux tubes initially in thermal equilibrium (TEQ) rise as

axisymmetric rings in a quiescent interior. The early motion of
the flux tube is largely dominated by the initial horizontal force
imbalance, with the evolution continually adjusting until the
sum of the inward- and outward-directed components of the
magnetic buoyancy, tension, Coriolis force, and drag force
reaches equilibrium. Once a horizontal equilibrium is reached,
the motion of the ring turns parallel to the rotation axis, driven
by the unbalanced vertical component of buoyancy. A similar
behavior is found for TFT simulations of axisymmetric flux
rings rising through a quiescent solar convection zone (e.g.,
Choudhuri & Gilman 1987). The effect of radiative heating on
the flux tubes, though included in our simulations, is minimal.
To our knowledge, TFT simulations in a fully convective

star have only been considered here and in Browning et al.
(2016). Traditional TFT models tend to assume that the
dynamo mechanism generates toroidal flux tubes at the
interface between the radiative interior and the convection
zone, often assumed to be in mechanical force equilibrium
(MEQ) and neutral buoyancy (e.g., Caligari et al. 1995;
Granzer et al. 2000; Holzwarth & Schüssler 2001; Weber et al.
2011). However, recent simulations of global-scale dynamo
action in spherical shells (e.g., Nelson et al. 2014) have
demonstrated that, at least in some parameter regimes, buoyant
magnetic loops can be built by a distributed dynamo without a
tachocline region. Rather than achieving neutral buoyancy and
MEQ, as is argued for flux tubes built by an interface dynamo,
it is more likely that flux tubes built by a distributed dynamo
achieve a state closer to that of TEQ. To facilitate some level of
comparison between these initial condition assumptions, we
also perform some simulations where flux tubes initially in
MEQ rise through a quiescent convection zone. Similar to TFT
models in stars with small radiative cores (e.g., Granzer
et al. 2000; Holzwarth & Schüssler 2001), we find that most of
these flux tubes slip poleward, driven by a magnetic tension
force that is dominant compared to buoyancy. However,
strongly super-equipartition flux tubes can develop low-order
( =m 1 2– ) unstable modes if the magnetic field strength and
radius of curvature arelarge enough.
The solar archetype of buoyantly rising, loop-shaped

magnetic structures is not achievable in the interior of fully
convective stars if the initially toroidal flux tube is assumed to
be in TEQ, as we show in Section 3.1. However, the addition of
a time-varying convective velocity field modulates the
axisymmetric flux ring, promoting rising loops. All flux tubes
we study initiated in the deep interior have apices (i.e., the
portion reaching the simulation upper boundary first) that rise
almost exactly parallel to the rotation axis, following the
relationship given in Equation (13). However, when subjected
to a strong differential rotation profile with an angular velocity
contrast comparable to the Sun, and likewise built corotating
with the local azimuthal flow, flux tubes of a few times Bc

(30–40 kG) initiated at low latitudes (10°–15°) and in
shallower depths of 0.75R are able to emerge at latitudes

Figure 15. Average relative pumping depth Dr as a function of the absolute
value of initial latitude for (a)Case TLfC flux tubes initiated at 0.5R and (b and
c) CaseTLsC flux tubes initiated at depths of 0.5Rand 0.75R, respectively.
Suppression of the global motion of the flux tube by convective downflows is
more efficient in the deeper interior and at lower latitudes. Bars on the symbols
represent the standard deviationand are only shown for 30 kG flux tubes,
which tend to show the largest spread in Dr about the mean.
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significantly lower than what Equation (13) predicts, and even
at the equator. The strong prograde fv 0 inside the tube initially
causes it to move into shallower layers via induced Coriolis
forces. The differential rotation in these layers supplies angular
momentum to the legs of the rising loop, facilitating lower-
latitude emergence (as seen in Fan et al. 1994 in the solar
context). A reduced rise time arises, in part, from this action as
well, but is also a result of the more radial trajectory, requiring
the flux tube apex to traverse a shorter distance to the surface.
When subjected to a slower differential rotation profile closer
to that of a rigid rotator, and more commensurate with
observations of Mdwarfs, only strongly super-equipartition
flux tubes of 200 kG are able to emerge in the near-equatorial
region. The large magnetic buoyancy brings the tube
horizontally outward to very near the surface, where the
stronger downflows of smaller spatial scale modulate the flux
tube to promote buoyant loops before the mean motion of the
flux tube can turn poleward.

With our simulations, we can also assess the efficiency of
magnetic pumping. By avoiding strong downflows, or
encountering a series of favorable mean and local flows, a
buoyant loop may be boosted to the surface faster than if the
tube traveled through a quiescent interior. Alternatively, the
mean motion of the flux tube may be suppressed by continual
pummeling of the flux tube by downflows. As expected, flux
tubes of weaker magnetic field strength are pumped to a greater
degree (e.g., Tobias et al. 2001; Abbett et al. 2004). For flux
tubes of the same magnetic field strength, we find that magnetic
pumping is most efficient in the deeper interior and nearer the
equator. This is partly a consequence of reduced flux tube
buoyancy in the deeper interior and a reduced magnetic tension
at lower latitudes (compared to higher latitudes at the same
radial depth).

Our results suggest that emerging flux tubes, if produced in
the interior, could plausibly account for the appearance of
starspots at mid-tohigh latitudes. But what of lower-latitude
spots, especially those appearing near the equator? There are a
few possible scenarios to explain the appearance of very
lowlatitude starspots: (1) the magnetic field strength B0 of
progenitor flux tubes isstrongly super-equipartition, (2) the
differential rotation profile in the interior is much stronger than
what is observed at the surface, (3) the tubes eventually
emerging at the surface are generated in much shallower
regions than what is accessible through our TFT simulations
given our choice of B0 and magnetic flux of ~10 1021 22– Mx,
(4) the active regions are a grouping of much smaller magnetic
flux bundles, with F < 1021 Mx. To truly elucidate the
processes responsible for equatorial and low-latitude starspots
in afully convective star, more work is needed.

We speculate that the longitudinal extent of active regions
that may be produced by our simulations is limited by the size
of the cellular convective structures in the upper convection
zone, where radial downflows have the strongest amplitudes.
Similar to the TFT simulations of Weber et al. (2013a) in the
solar convection zone, strong downflow lanes at the edges of
giant cells might contribute to a preferential longitudinal
emergence of active regions. Addressing the “spottedness” of
the star, in particular the percentage of starspot coverage on the
surface at any time, is beyond the scope of the simulations
presented here.

Like all simulations of stellar convection and magnetic flux
emergence, we have made a number of simplifications in our

modeling. Many of these stem from the fundamental assump-
tions and numerical requirements of the anelastic and TFT
approximations. Arguably, the most significant assumption we
have made is that dynamo action in a fully convective star
builds coherent, individual flux tubes in a toroidal geometry
distributed throughout the bulk of the interior. The true nature
of dynamo-generated magnetic fields in the interior of any star
is still largely unknown. In fully convective stars, it may well
be the case that the poloidal field plays a role in flux emergence
as well, rather than the toroidal field alone.
The TFT approximation also does not resolve the cross-

section of the flux tube, assuming that it always remains
circular with a radius p= Fa B 1 2( ) . As the tube rises, it
expands and attains greater speeds. A flux tube moving
transversely through a fluid will feel a pressure excess on the
leading and trailing surfaces, with a pressure deficit on the
sides. Such a pressure difference could flatten the flux tube into
a ribbon-like shape, reducing the rise speed (e.g., Parker 1975).
The tube may fragment or become shredded by convective
motions, perhaps developing a more umbrella-shaped cross-
section (e.g., Schuessler 1979; Fan et al. 1998). This could
effectively be captured in the drag force of the TFT model by
varying the drag coefficient as the tube rises. We plan to
investigate this effect in the future in the solar context.
We have employed an angular velocity W = ´ -2.6 100

6

rad s−1, comparable to the Sun. For a star of radius 2.0
´ 1010 cm, this implies a rotational velocity =v 0.5rot km s−1,
below the current ~v isin 2 km s−1 detection limit for Doppler
broadening (e.g., Delfosse et al. 1998; Browning et al. 2010;
Reiners et al. 2012). From an observational standpoint, our
simulations are essentially nonrotating, with some M-dwarf
rotational velocities exceeding ~v isin 20 km s−1 (e.g., Jen-
kins et al. 2009). Investigations of dynamo action and flux
emergence in more rapidly rotating, fully convective stars have
been planned for the future. Broadly, we anticipate that more
rapidly rotating objects would show an even stronger tendency
toward flux emergence near the poles. Rapid rotation may also
alter the “giant-cell” convective structure pattern (e.g., Brown
et al. 2008).
Our choice of flux tube initial conditions and the treatment of

the external velocity field could, in some cases, contribute to
our results in a non-negligible way. Foremost among these is
assuming a density deficit inside the tube prescribed by the
condition of TEQ, resulting in a substantial buoyancy force
compared to the neutrally buoyant state of flux tubes in MEQ.
It may well be the case that flux tubes are built in a state
somewhere between these extremes. The assumption that flux
tubes are built corotating with the local plasma, initializing a
flow fv 0 inside the tube, also plays a role in the subsequent
force evolution. Modeling flux tubes with a smaller cross-
sectional radius a than the chosen ∼2´108 cm could result in
more examples of low-latitude emergence, as such tubes are
advected more strongly by convective flows. It is also likely
that the strong magnetic fields we consider could quench the
differential rotation, reducing the angular velocity contrast,
similar to that of Case Cm in Browning (2008). The method we
use to treat the external velocity field, discussed in Section 2.3,
does not take into account corresponding changes made to the
time-varying radial and longitudinal velocity field due to
dynamo action. However, we point out that the amplitudes of
the radial velocity field and nature of the giant-cell convection
in the hydrodynamic simulation used here arecommensurate
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with Case Cm. The amplitude of the meridional circulation
established in either case likely contributes little to flux tube
evolution.

The modeling approach we take is advantageous in that we
can prescribe a number of parameters to see how flux tubes
initiated in different regions of the star with various magnetic
field strengths may behave. While our tubes are not generated
self-consistently, we can evaluate many possible flux tubes that
may existand examine how they might behave under certain
external conditions. Although observations of Mdwarfs are
increasing in number, detailed and long-term observations of
active regions on these stars arelimited. Our understanding of
stellar magnetism is largely driven by what we have observed
on the Sun. Ideally, we would hope to retrieve information
about whether uniform starspot coverage is the norm,
whetheractive regions are mostly bipolar as they are on the
Sun, and if so, whether they exhibit tilting toward the equator
following Joy’s law, and/or opposite polarities in opposite
hemispheres following Hale’s law. Such detailed observations
of individual active regions on any star other than the Sun are
likely years in the future. Until then, we turn to theory and
simulations to guide our knowledge of the in-depth operation
of stellar dynamos. The TFT simulations we have presented
here serve to complement existing 3D dynamo simulations of
fully convective stars, providing a link between dynamo-
generated magnetic fields, fluid motions, and starspots.
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