86 research outputs found

    Long term records of erosional change from marine ferromanganese crusts

    Get PDF
    Ferromanganese crusts from the Atlantic, Indian and Pacific Oceans record the Nd and Pb isotope compositions of the water masses from which they form as hydrogenous precipitates. The10Be/9Be-calibrated time series for crusts are compared to estimates based on Co-contents, from which the equatorial Pacific crusts studied are inferred to have recorded ca. 60 Ma of Pacific deep water history. Time series of ɛNd show that the oceans have maintained a strong provinciality in Nd isotopic composition, determined by terrigenous inputs, over periods of up to 60 Ma. Superimposed on the distinct basin-specific signatures are variations in Nd and Pb isotope time series which have been particularly marked over the last 5 Ma. It is shown that changes in erosional inputs, particularly associated with Himalayan uplift and the northern hemisphere glaciation have influenced Indian and Atlantic Ocean deep water isotopic compositions respectively. There is no evidence so far for an imprint of the final closure of the Panama Isthmus on the Pb and Nd isotopic composition in either Atlantic or Pacific deep water masses

    Modelling gravitational instabilities: slab break-off and Rayleigh-Taylor diapirism

    Get PDF
    A non-standard new code to solve multiphase viscous thermo–mechanical problems applied to geophysics is presented. Two numerical methodologies employed in the code are described: A level set technique to track the position of the materials and an enrichment of the solution to allow the strain rate to be discontinuous across the interface. These techniques have low computational cost and can be used in standard desktop PCs. Examples of phase tracking with level set are presented in two and three dimensions to study slab detachment in subduction processes and Rayleigh–Taylor instabilities, respectively. The modelling of slab detachment processes includes realistic rheology with viscosity depending on temperature, pressure and strain rate; shear and adiabatic heating mechanisms; density including mineral phase changes and varying thermal conductivity. Detachment models show a first prolonged period of thermal diffusion until a fast necking of the subducting slab results in the break–off. The influence of several numerical and physical parameters on the detachment process is analyzed: The shear heating exerts a major influence accelerating the detachment process, reducing the onset time to one half and lubricating the sinking of the detached slab. The adiabatic heating term acts as a thermal stabilizer. If the mantle temperature follows an adiabatic gradient, neglecting this heating term must be included, otherwise all temperature contrasts are overestimated. As expected, the phase change at 410 km depth (olivine–spinel transition) facilitates the detachment process due to the increase in negative buoyancy. Finally, simple plume simulations are used to show how the presented numerical methodologies can be extended to three dimensions.Peer ReviewedPostprint (author’s final draft

    Linking magmatism with collision in an accretionary orogen

    Get PDF
    A compilation of U-Pb age, geochemical and isotopic data for granitoid plutons in the southern Central Asian Orogenic Belt (CAOB), enables evaluation of the interaction between magmatism and orogenesis in the context of Paleo-Asian oceanic closure and continental amalgamation. These constraints, in conjunction with other geological evidence, indicate that following consumption of the ocean, collision-related calc-alkaline granitoid and mafic magmatism occurred from 255 ± 2 Ma to 251 ± 2 Ma along the Solonker-Xar Moron suture zone. The linear or belt distribution of end-Permian magmatism is interpreted to have taken place in a setting of final orogenic contraction and weak crustal thickening, probably as a result of slab break-off. Crustal anatexis slightly post-dated the early phase of collision, producing adakite-like granitoids with some S-type granites during the Early-Middle Triassic (ca. 251-245 Ma). Between 235 and 220 Ma, the local tectonic regime switched from compression to extension, most likely caused by regional lithospheric extension and orogenic collapse. Collision-related magmatism from the southern CAOB is thus a prime example of the minor, yet tell-tale linking of magmatism with orogenic contraction and collision in an archipelago-type accretionary orogen

    Determination of nutrient salts by automatic methods both in seawater and brackish water: the phosphate blank

    Get PDF
    9 páginas, 2 tablas, 2 figurasThe main inconvenience in determining nutrients in seawater by automatic methods is simply solved: the preparation of a suitable blank which corrects the effect of the refractive index change on the recorded signal. Two procedures are proposed, one physical (a simple equation to estimate the effect) and the other chemical (removal of the dissolved phosphorus with ferric hydroxide).Support for this work came from CICYT (MAR88-0245 project) and Conselleria de Pesca de la Xunta de GaliciaPeer reviewe
    corecore