67 research outputs found

    Influence of topical therapy with the parasiticide Ivermectin on embryo transfer in mice

    Get PDF
    It was necessary to treat a colony of several thousand transgenic and wild, type breeding mice for parasitic infestations. The suitability of the anti-parasitie agent, ivermectin, for controlling parasites in mice which are to be used for embryo transfer was investigated in a small preliminary study. There were no significant differences in plugging rate, number of embryos produced, number of implantations or number of resorptions between treated and untreated mice. Therefore the main colony of transgenic mice was treated with ivermectin to remove oxyurid worms and mites. The treatment was effective, since no parasites were found at a subsequent health screen, and there were no adverse effects such as diarrhoea or mis-mothering in treated mice. These results indicate that ivermeetin could be used in mice for transgenic studies without causing detrimental effects on either the mice or the experiment

    Rederivation of transgenic mice from iPS cells derived from frozen tissue

    Get PDF
    In mice, induced pluripotent stem (iPS) cells with embryonic stem (ES)-like characteristics have been derived by ectopic expression of four transcription factors in somatic cells: Sox2, Oct3/4, Klf4 and/or c-Myc. To date, iPS cells have only be made from freshly harvested tissues and cells. However, if iPS cells could be derived from frozen tissues and cells, then cryopreservation of tissues such as mouse tails could conceivably become a reliable alternative to the more traditional formats, like germplasm and ES cells, for the archiving of genetically altered mouse lines. To test this hypothesis, we sought to demonstrate that a live transgenic mouse line could be recovered from transgenic iPS cells derived from cryopreserved mouse tissues. Tails and tail-derived fibroblasts from a DsRED transgenic mouse were cryopreserved in the presence of 5% dimethylsulfoxide (DMSO) in liquid nitrogen for 1 week and 1 month, respectively. Afterward, tissues and cells were thawed and underwent nuclear reprogramming by molecular transfection to derive iPS cells which generated germline confirmed transgenic mice. Our results demonstrate for the first time that iPS cells can be efficiently derived from frozen-stored-thawed tail tissue and fibroblasts and used to re-establish a transgenic mouse line. Therefore, this study provides conclusive evidence that, as a practical matter, frozen tails and fibroblasts can be used as an effective and reliable alternative to frozen germplasm and ES cells for the storage, maintenance, and distribution of genetically-altered mutant mice

    CA125/MUC16 Is Dispensable for Mouse Development and Reproduction

    Get PDF
    Cancer antigen 125 (CA125) is a blood biomarker that is routinely used to monitor the progression of human epithelial ovarian cancer (EOC) and is encoded by MUC16, a member of the mucin gene family. The biological function of CA125/MUC16 and its potential role in EOC are poorly understood. Here we report the targeted disruption of the of the Muc16 gene in the mouse. To generate Muc16 knockout mice, 6.0 kb was deleted that included the majority of exon 3 and a portion of intron 3 and replaced with a lacZ reporter cassette. Loss of Muc16 protein expression suggests that Muc16 homozygous mutant mice are null mutants. Muc16 homozygous mutant mice are viable, fertile, and develop normally. Histological analysis shows that Muc16 homozygous mutant tissues are normal. By the age of 1 year, Muc16 homozygous mutant mice appear normal. Downregulation of transcripts from another mucin gene (Muc1) was detected in the Muc16 homozygous mutant uterus. Lack of any prominent abnormal phenotype in these Muc16 knockout mice suggests that CA125/MUC16 is not required for normal development or reproduction. These knockout mice provide a unique platform for future studies to identify the role of CA125/MUC16 in organ homeostasis and ovarian cancer

    Intrinsically determined cell death of developing cortical interneurons

    Get PDF
    Cortical inhibitory circuits are formed by GABAergic interneurons, a cell population that originates far from the cerebral cortex in the embryonic ventral forebrain. Given their distant developmental origins, it is intriguing how the number of cortical interneurons is ultimately determined. One possibility, suggested by the neurotrophic hypothesis1-5, is that cortical interneurons are overproduced, and then following their migration into cortex, excess interneurons are eliminated through a competition for extrinsically derived trophic signals. Here we have characterized the developmental cell death of mouse cortical interneurons in vivo, in vitro, and following transplantation. We found that 40% of developing cortical interneurons were eliminated through Bax- (Bcl-2 associated X-) dependent apoptosis during postnatal life. When cultured in vitro or transplanted into the cortex, interneuron precursors died at a cellular age similar to that at which endogenous interneurons died during normal development. Remarkably, over transplant sizes that varied 200-fold, a constant fraction of the transplanted population underwent cell death. The death of transplanted neurons was not affected by the cell-autonomous disruption of TrkB (tropomyosin kinase receptor B), the main neurotrophin receptor expressed by central nervous system (CNS) neurons6-8. Transplantation expanded the cortical interneuron population by up to 35%, but the frequency of inhibitory synaptic events did not scale with the number of transplanted interneurons. Together, our findings indicate that interneuron cell death is intrinsically determined, either cell-autonomously, or through a population-autonomous competition for survival signals derived from other interneurons

    Human β-D-3 Exacerbates MDA5 but Suppresses TLR3 Responses to the Viral Molecular Pattern Mimic Polyinosinic:Polycytidylic Acid

    Get PDF
    Human β-defensin 3 (hBD3) is a cationic host defence peptide and is part of the innate immune response. HBD3 is present on a highly copy number variable block of six β-defensin genes, and increased copy number is associated with the autoimmune disease psoriasis. It is not known how this increase influences disease development, but psoriasis is a T cell-mediated disease and activation of the innate immune system is required for the initial trigger that leads to the amplification stage. We investigated the effect of hBD3 on the response of primary macrophages to various TLR agonists. HBD3 exacerbated the production of type I Interferon-β in response to the viral ligand mimic polyinosinic:polycytidylic acid (polyI:C) in both human and mouse primary cells, although production of the chemokine CXCL10 was suppressed. Compared to polyI:C alone, mice injected with both hBD3 peptide and polyI:C also showed an enhanced increase in Interferon-β. Mice expressing a transgene encoding hBD3 had elevated basal levels of Interferon-β, and challenge with polyI:C further increased this response. HBD3 peptide increased uptake of polyI:C by macrophages, however the cellular response and localisation of polyI:C in cells treated contemporaneously with hBD3 or cationic liposome differed. Immunohistochemistry showed that hBD3 and polyI:C do not co-localise, but in the presence of hBD3 less polyI:C localises to the early endosome. Using bone marrow derived macrophages from knockout mice we demonstrate that hBD3 suppresses the polyI:C-induced TLR3 response mediated by TICAM1 (TRIF), while exacerbating the cytoplasmic response through MDA5 (IFIH1) and MAVS (IPS1/CARDIF). Thus, hBD3, a highly copy number variable gene in human, influences cellular responses to the viral mimic polyI:C implying that copy number may have a significant phenotypic effect on the response to viral infection and development of autoimmunity in humans

    A high-throughput platform for stem cell niche co-cultures and downstream gene expression analysis

    Get PDF
    Stem cells reside in 'niches', where support cells provide critical signalling for tissue renewal. Culture methods mimic niche conditions and support the growth of stem cells in vitro. However, current functional assays preclude statistically meaningful studies of clonal stem cells, stem cell-niche interactions, and genetic analysis of single cells and their organoid progeny. Here, we describe a 'microraft array' (MRA) that facilitates high-throughput clonogenic culture and computational identification of single intestinal stem cells (ISCs) and niche cells. We use MRAs to demonstrate that Paneth cells, a known ISC niche component, enhance organoid formation in a contact-dependent manner. MRAs facilitate retrieval of early enteroids for quantitative PCR to correlate functional properties, such as enteroid morphology, with differences in gene expression. MRAs have broad applicability to assaying stem cell-niche interactions and organoid development, and serve as a high-throughput culture platform to interrogate gene expression at early stages of stem cell fate choices

    Lessons from mouse chimaera experiments with a reiterated transgene marker:revised marker criteria and a review of chimaera markers

    Get PDF
    Recent reports of a new generation of ubiquitous transgenic chimaera markers prompted us to consider the criteria used to evaluate new chimaera markers and develop more objective assessment methods. To investigate this experimentally we used several series of fetal and adult chimaeras, carrying an older, multi-copy transgenic marker. We used two additional independent markers and objective, quantitative criteria for cell selection and cell mixing to investigate quantitative and spatial aspects of developmental neutrality. We also suggest how the quantitative analysis we used could be simplified for future use with other markers. As a result, we recommend a five-step procedure for investigators to evaluate new chimaera markers based partly on criteria proposed previously but with a greater emphasis on examining the developmental neutrality of prospective new markers. These five steps comprise (1) review of published information, (2) evaluation of marker detection, (3) genetic crosses to check for effects on viability and growth, (4) comparisons of chimaeras with and without the marker and (5) analysis of chimaeras with both cell populations labelled. Finally, we review a number of different chimaera markers and evaluate them using the extended set of criteria. These comparisons indicate that, although the new generation of ubiquitous fluorescent markers are the best of those currently available and fulfil most of the criteria required of a chimaera marker, further work is required to determine whether they are developmentally neutral. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11248-015-9883-7) contains supplementary material, which is available to authorized users

    Microinjection of BAC DNA into the pronuclei of fertilized mouse oocytes

    No full text
    Microinjection of DNA into the pronuclei of fertilized oocytes is one of the two most commonly used methods for gene transfer into the mouse genome (1,2). The first successful attempt to perform this technique was carried out by Lin in 1966 (3), who could show that the early fertilized embryo could survive the mechanical damage of inserting a glass needle into the pronucleus. However, it was not until 1981 that small DNA fragments were integrated into the genome (4). This technique is well described, and has now become a standard procedure (5,6). More recently, the use of larger DNA fragments has been established. Yeast artificial chromosome (YAC) (7,8), P1 artificial chromosome (PAC) (9,10), and bacterial artificial chromosome (BAC) DNA (11,12) can all be used for the generation of transgenic mice. A comprehensive review of BAC and YAC transgenesis is given by Giraldo and Montoliu (13) extensively comparing these applications. Although the basic technique for microinjection of large constructs are similar to those used for shorter DNA segments, there are some special requirements (14). In this chapter, we describe relevant steps for microinjection using large DNA constructs
    corecore