17 research outputs found

    Passive acoustic monitoring reveals year-round marine mammal community composition off Tasiilaq, Southeast Greenland

    Get PDF
    Climate-driven changes are affecting sea ice conditions off Tasiilaq, Southeast Greenland, with implications for marine mammal distributions. Knowledge about marine mammal presence, biodiversity, and community composition is key to effective conservation and management but is lacking, especially during winter months. Seasonal patterns of acoustic marine mammal presence were investigated relative to sea ice concentration at two recording sites between 2014 and 2018, with one (65.6°N, 37.4°W) or three years (65.5°N, 38.0°W) of passive acoustic recordings. Seven marine mammal species were recorded. Bearded seals were acoustically dominant during winter and spring, whereas sperm, humpback, and fin whales dominated during the sea ice-free summer and autumn. Narwhals, bowhead, and killer whales were recorded only rarely. Song-fragments of humpback whales and acoustic presence of fin whales in winter suggest mating-associated behavior taking place in the area. Ambient noise levels in 1/3-octave level bands (20, 63, 125, 500, 1000, and 4000 Hz), ranged between 75.6 to 105 dB re 1 μPa. This study provides multi-year insights into the coastal marine mammal community composition off Southeast Greenland and suggests that the Tasiilaq area provides suitable habitat for various marine mammal species year-round

    Blue whale sightings in Antarctica west of the Greenwich meridian, Januart 2015

    Get PDF
    During the RV Polarstern PS 89 (ANT-XXX/2) expedition from Cape Town to Atka Bay and back, 20 sightings of 26 individual blue whales (Balaenoptera musculus) were recorded in Antarctic waters west of the Greenwich Meridian between 16-20 January 2015. These observations suggest a more westerly extension of a reported hot spot between the Greenwich Meridian and 20°E

    Long-term passive acoustic recordings track the changing distribution of North Atlantic right whales (Eubalaena glacialis) from 2004 to 2014

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 7 (2017): 13460, doi:10.1038/s41598-017-13359-3.Given new distribution patterns of the endangered North Atlantic right whale (NARW; Eubalaena glacialis) population in recent years, an improved understanding of spatio-temporal movements are imperative for the conservation of this species. While so far visual data have provided most information on NARW movements, passive acoustic monitoring (PAM) was used in this study in order to better capture year-round NARW presence. This project used PAM data from 2004 to 2014 collected by 19 organizations throughout the western North Atlantic Ocean. Overall, data from 324 recorders (35,600 days) were processed and analyzed using a classification and detection system. Results highlight almost year-round habitat use of the western North Atlantic Ocean, with a decrease in detections in waters off Cape Hatteras, North Carolina in summer and fall. Data collected post 2010 showed an increased NARW presence in the mid-Atlantic region and a simultaneous decrease in the northern Gulf of Maine. In addition, NARWs were widely distributed across most regions throughout winter months. This study demonstrates that a large-scale analysis of PAM data provides significant value to understanding and tracking shifts in large whale movements over long time scales.This research was funded and supported by many organizations, specified by projects as follows: Data recordings from region 1 were provided by K. Stafford and this research effort was funded by the National Science Foundation #NSF-ARC 0532611. Region 2 data were provided by D. K. Mellinger and S. Nieukirk, funded by National Oceanic and Atmospheric Agency (NOAA) and the Office of Naval Research (ONR) #N00014–03–1–0099, NOAA #NA06OAR4600100, US Navy #N00244-08-1-0029, N00244-09-1-0079, and N00244-10-1-0047

    Plant Diversity Surpasses Plant Functional Groups and Plant Productivity as Driver of Soil Biota in the Long Term

    Get PDF
    One of the most significant consequences of contemporary global change is the rapid decline of biodiversity in many ecosystems. Knowledge of the consequences of biodiversity loss in terrestrial ecosystems is largely restricted to single ecosystem functions. Impacts of key plant functional groups on soil biota are considered to be more important than those of plant diversity; however, current knowledge mainly relies on short-term experiments.We studied changes in the impacts of plant diversity and presence of key functional groups on soil biota by investigating the performance of soil microorganisms and soil fauna two, four and six years after the establishment of model grasslands. The results indicate that temporal changes of plant community effects depend on the trophic affiliation of soil animals: plant diversity effects on decomposers only occurred after six years, changed little in herbivores, but occurred in predators after two years. The results suggest that plant diversity, in terms of species and functional group richness, is the most important plant community property affecting soil biota, exceeding the relevance of plant above- and belowground productivity and the presence of key plant functional groups, i.e. grasses and legumes, with the relevance of the latter decreasing in time.Plant diversity effects on biota are not only due to the presence of key plant functional groups or plant productivity highlighting the importance of diverse and high-quality plant derived resources, and supporting the validity of the singular hypothesis for soil biota. Our results demonstrate that in the long term plant diversity essentially drives the performance of soil biota questioning the paradigm that belowground communities are not affected by plant diversity and reinforcing the importance of biodiversity for ecosystem functioning

    Overview of the MOSAiC expedition: Physical oceanography

    Get PDF
    Arctic Ocean properties and processes are highly relevant to the regional and global coupled climate system, yet still scarcely observed, especially in winter. Team OCEAN conducted a full year of physical oceanography observations as part of the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC), a drift with the Arctic sea ice from October 2019 to September 2020. An international team designed and implemented the program to characterize the Arctic Ocean system in unprecedented detail, from the seafloor to the air-sea ice-ocean interface, from sub-mesoscales to pan-Arctic. The oceanographic measurements were coordinated with the other teams to explore the ocean physics and linkages to the climate and ecosystem. This paper introduces the major components of the physical oceanography program and complements the other team overviews of the MOSAiC observational program. Team OCEAN’s sampling strategy was designed around hydrographic ship-, ice- and autonomous platform-based measurements to improve the understanding of regional circulation and mixing processes. Measurements were carried out both routinely, with a regular schedule, and in response to storms or opening leads. Here we present alongdrift time series of hydrographic properties, allowing insights into the seasonal and regional evolution of the water column from winter in the Laptev Sea to early summer in Fram Strait: freshening of the surface, deepening of the mixed layer, increase in temperature and salinity of the Atlantic Water. We also highlight the presence of Canada Basin deep water intrusions and a surface meltwater layer in leads. MOSAiC most likely was the most comprehensive program ever conducted over the ice-covered Arctic Ocean. While data analysis and interpretation are ongoing, the acquired datasets will support a wide range of physical oceanography and multi-disciplinary research. They will provide a significant foundation for assessing and advancing modeling capabilities in the Arctic Ocean

    Mesozooplankton abundance and distribution in Fram Strait in comparison between a cold and a warm year

    Get PDF
    Zooplankton species, which link primary production and higher trophic levels and play a major role in pelagic marine ecosystems, are associated with distinct water masses. In Fram Strait, the only deep-water connection between the Atlantic and Arctic Ocean, relatively warm Atlantic water (AW) enters the Arctic with the West Spitsbergen Current, whereas the East Greenland Current carries cold polar water masses southwards. Rising water temperatures might change the zooplankton community, with possible consequences for the food web. We therefore investigated the mesozooplankton abundance and community composition during two cruises with RV ‘Polarstern’ in summer 2011 (warm AW) and 2012 (cold AW). Vertical multinet hauls covering five different depth strata were taken along a transect at 78° 50’ N. In both years, the zooplankton abundance was higher in the eastern (AW) as compared to the western Fram Strait (Polar water), with copepods dominating the communities. The basic community composition did not change significantly between years at distinct sampling stations, despite temperature differences of ~2°C in AW. Thus, trends for future community changes might only be observable in the long term

    Effects of subsampling of passive acoustic recordings on acoustic metrics

    Get PDF
    Passive acoustic monitoring is an important tool in marine mammal studies. However, logistics and finances frequently constrain the number and servicing schedules of acoustic recorders, requiring a trade-off between deployment periods and sampling continuity, i.e., the implementation of a subsampling scheme. Optimizing such schemes to each project's specific research questions is desirable. This study investigates the impact of subsampling on the accuracy of two common metrics, acoustic presence and call rate, for different vocalization patterns (regimes) of baleen whales: (1) variable vocal activity, (2) vocalizations organized in song bouts, and (3) vocal activity with diel patterns. To this end, above metrics are compared for continuous and subsampled data subject to different sampling strategies, covering duty cycles between 50% and 2%. The results show that a reduction of the duty cycle impacts negatively on the accuracy of both acoustic presence and call rate estimates. For a given duty cycle, frequent short listening periods improve accuracy of daily acoustic presence estimates over few long listening periods. Overall, subsampling effects are most pronounced for low and/or temporally clustered vocal activity. These findings illustrate the importance of informed decisions when applying subsampling strategies to passive acoustic recordings or analyses for a given target species
    corecore