34 research outputs found

    T84-intestinal epithelial exosomes bear MHC class II/peptide complexes potentiating antigen presentation by dendritic cells: Function of intestinal epithelial exosomes

    Get PDF
    International audienceBackground and aims: Intestinal epithelial cells release antigen presenting vesicles (exosomes) bearing MHC class II/peptide complexes stimulating specific immune responses in vivo. To further characterize the role of human epithelial exosomes in antigen presentation, their capacity to load antigenic peptides, to bind immune target cells and to induce T cell activation was analyzed in vitro. Methods: The capacity of exosomes derived from the HLA-DR4 expressing, intestinal epithelial cell line T84, to load the HLA-DR4-specific peptide 3H-HSA 64-76 and to activate a HLA-DR4-restricted T cell hybridoma, was tested in the presence or absence of human monocyte-derived dendritic cells (DCs). Interaction of FITC-labeled exosomes with T cells and DCs was analyzed by flow cytometry and confocal microscopy. Results: T84-derived exosomes, enriched in CD9, CD81, CD82 and A33 antigen, were capable of binding specifically HSA 64-76 peptide on HLA-DR4 molecules and of interacting preferentially with DCs. HSA-loaded exosomes were unable to activate the T cell hybridoma directly, but induced a productive T cell activation through DCs. When HSA peptide was bound to exosomal HLA-DR4 molecules instead of in a soluble form, the threshold of peptide presentation by DCs was markedly decreased (x10-3). Conclusions: Exosomes released by intestinal epithelial cells bear exogenous peptides complexed to MHC class II molecules and interact preferentially with DCs, strongly potentiating peptide presentation to T cells. Epithelial exosomes constitute a powerful link between luminal antigens and local immune cells by mediating the transfer of tiny amounts of luminal antigenic information and facilitating immune surveillance at mucosal surfaces

    Parallels between Pathogens and Gluten Peptides in Celiac Sprue

    Get PDF
    Pathogens are exogenous agents capable of causing disease in susceptible organisms. In celiac sprue, a disease triggered by partially hydrolyzed gluten peptides in the small intestine, the offending immunotoxins cannot replicate, but otherwise have many hallmarks of classical pathogens. First, dietary gluten and its peptide metabolites are ubiquitous components of the modern diet, yet only a small, genetically susceptible fraction of the human population contracts celiac sprue. Second, immunotoxic gluten peptides have certain unusual structural features that allow them to survive the harsh proteolytic conditions of the gastrointestinal tract and thereby interact extensively with the mucosal lining of the small intestine. Third, they invade across epithelial barriers intact to access the underlying gut-associated lymphoid tissue. Fourth, they possess recognition sequences for selective modification by an endogenous enzyme, transglutaminase 2, allowing for in situ activation to a more immunotoxic form via host subversion. Fifth, they precipitate a T cell–mediated immune reaction comprising both innate and adaptive responses that causes chronic inflammation of the small intestine. Sixth, complete elimination of immunotoxic gluten peptides from the celiac diet results in remission, whereas reintroduction of gluten in the diet causes relapse. Therefore, in analogy with antibiotics, orally administered proteases that reduce the host's exposure to the immunotoxin by accelerating gluten peptide destruction have considerable therapeutic potential. Last but not least, notwithstanding the power of in vitro methods to reconstitute the essence of the immune response to gluten in a celiac patient, animal models for the disease, while elusive, are likely to yield fundamentally new systems-level insights
    corecore