236 research outputs found

    Security in the Age of Systemic Risk: Strategies, Tactics and Options for Dealing with Femtorisks and Beyond

    Get PDF
    The world today is increasingly confronted with systemic threats and challenges, in which femtorisks - small-scale dangers that are inherent to system structures and function and which pose asymmetrically catastrophic risks - can build in consequence, spreading uncontrollably like epidemics in both natural and social systems in such diverse areas as ecology, epidemiology, finance, the Internet, terrorism, and international relations. They have been successfully modeled in ecology in the context of complex adaptive systems: systems made up of individual agents, whose interactions have macroscopic consequences that feed back to influence individual behavior. While acknowledging challenges, this paper argues for the value of applying to societal systems the approaches that natural scientists have developed in quantifying and modeling biological interactions and ecosystems

    The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription

    Get PDF
    The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important during seedling establishment when the phytochrome photoreceptors activate photosynthetic pigment production for photoautotrophic growth. Phytochromes accomplish this partly through the suppression of phytochrome interacting factors (PIFs), negative regulators of chlorophyll and carotenoid biosynthesis. While the bZIP transcription factor long hypocotyl 5 (HY5), a potent PIF antagonist, promotes photosynthetic pigment accumulation in response to light. Here we demonstrate that by directly targeting a common promoter cis-element (G-box), HY5 and PIFs form a dynamic activation-suppression transcriptional module responsive to light and temperature cues. This antagonistic regulatory module provides a simple, direct mechanism through which environmental change can redirect transcriptional control of genes required for photosynthesis and photoprotection. In the regulation of photopigment biosynthesis genes, HY5 and PIFs do not operate alone, but with the circadian clock. However, sudden changes in light or temperature conditions can trigger changes in HY5 and PIFs abundance that adjust the expression of common target genes to optimise photosynthetic performance and growth

    Naloxone inhibits immune cell function by suppressing superoxide production through a direct interaction with gp91phox subunit of NADPH oxidase

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Both (-) and (+)-naloxone attenuate inflammation-mediated neurodegeneration by inhibition of microglial activation through superoxide reduction in an opioid receptor-independent manner. Multiple lines of evidence have documented a pivotal role of overactivated NADPH oxidase (NOX2) in inflammation-mediated neurodegeneration. We hypothesized that NOX2 might be a novel action site of naloxone to mediate its anti-inflammatory actions.</p> <p>Methods</p> <p>Inhibition of NOX-2-derived superoxide by (-) and (+)-naloxone was measured in lipopolysaccharide (LPS)-treated midbrain neuron-glia cultures and phorbol myristate acetate (PMA)-stimulated neutrophil membranes by measuring the superoxide dismutase (SOD)-inhibitable reduction of tetrazolium salt (WST-1) or ferricytochrome c. Further, various ligand (<sup>3</sup>H-naloxone) binding assays were performed in wild type and gp91<it><sup>phox-/- </sup></it>neutrophils and transfected COS-7 and HEK293 cells. The translocation of cytosolic subunit p47<it><sup>phox </sup></it>to plasma membrane was assessed by western blot.</p> <p>Results</p> <p>Both (-) and (+)-naloxone equally inhibited LPS- and PMA-induced superoxide production with an IC50 of 1.96 and 2.52 μM, respectively. Competitive binding of <sup>3</sup>H-naloxone with cold (-) and (+)-naloxone in microglia showed equal potency with an IC50 of 2.73 and 1.57 μM, respectively. <sup>3</sup>H-Naloxone binding was elevated in COS-7 and HEK293 cells transfected with gp91<sup><it>phox</it></sup>; in contrast, reduced <sup>3</sup>H-naloxone binding was found in neutrophils deficient in gp91<sup><it>phox </it></sup>or in the presence of a NOX2 inhibitor. The specificity and an increase in binding capacity of <sup>3</sup>H-naloxone were further demonstrated by 1) an immunoprecipitation study using gp91<sup><it>phox </it></sup>antibody, and 2) activation of NOX2 by PMA. Finally, western blot studies showed that naloxone suppressed translocation of the cytosolic subunit p47<sup><it>phox </it></sup>to the membrane, leading to NOX2 inactivation.</p> <p>Conclusions</p> <p>Strong evidence is provided indicating that NOX2 is a non-opioid novel binding site for naloxone, which is critical in mediating its inhibitory effect on microglia overactivation and superoxide production.</p

    A Genome-Wide Association Study Identifies Variants Underlying the Arabidopsis thaliana Shade Avoidance Response

    Get PDF
    Shade avoidance is an ecologically and molecularly well-understood set of plant developmental responses that occur when the ratio of red to far-red light (R∶FR) is reduced as a result of foliar shade. Here, a genome-wide association study (GWAS) in Arabidopsis thaliana was used to identify variants underlying one of these responses: increased hypocotyl elongation. Four hypocotyl phenotypes were included in the study, including height in high R∶FR conditions (simulated sun), height in low R∶FR conditions (simulated shade), and two different indices of the response of height to low R∶FR. GWAS results showed that variation in these traits is controlled by many loci of small to moderate effect. A known PHYC variant contributing to hypocotyl height variation was identified and lists of significantly associated genes were enriched in a priori candidates, suggesting that this GWAS was capable of generating meaningful results. Using metadata such as expression data, GO terms, and other annotation, we were also able to identify variants in candidate de novo genes. Patterns of significance among our four phenotypes allowed us to categorize associations into three groups: those that affected hypocotyl height without influencing shade avoidance, those that affected shade avoidance in a height-dependent fashion, and those that exerted specific control over shade avoidance. This grouping allowed for the development of explicit hypotheses about the genetics underlying shade avoidance variation. Additionally, the response to shade did not exhibit any marked geographic distribution, suggesting that variation in low R∶FR–induced hypocotyl elongation may represent a response to local conditions
    corecore