287 research outputs found
Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon
Inflammatory bowel diseases (IBD) comprise a group of common and debilitating chronic intestinal disorders for which currently available therapies are often unsatisfactory. The naturally occurring secondary bile acid, ursodeoxycholic acid (UDCA), has well-established anti-inflammatory and cytoprotective actions and may therefore be effective in treating IBD. We aimed to investigate regulation of colonic inflammatory responses by UDCA and to determine the potential impact of bacterial metabolism on its therapeutic actions. The anti-inflammatory efficacy of UDCA, a nonmetabolizable analog, 6 alpha-methyl-UDCA (6-MUDCA), and its primary colonic metabolite lithocholic acid (LCA) was assessed in the murine dextran sodium sulfate (DSS) model of mucosal injury. The effects of bile acids on cytokine (TNF-alpha, IL-6, Il-1 beta, and IFN-alpha) release from cultured colonic epithelial cells and mouse colonic tissue in vivo were investigated. Luminal bile acids were measured by gas chromatography-mass spectrometry. UDCA attenuated release of proinflammatory cytokines from colonic epithelial cells in vitro and was protective against the development of colonic inflammation in vivo. In contrast, although 6-MUDCA mimicked the effects of UDCA on epithelial cytokine release in vitro, it was ineffective in preventing inflammation in the DSS model. In UDCA-treated mice, LCA became the most common colonic bile acid. Finally, LCA treatment more potently inhibited epithelial cytokine release and protected against DSS-induced mucosal inflammation than did UDCA. These studies identify a new role for the primary metabolite of UDCA, LCA, in preventing colonic inflammation and suggest that microbial metabolism of UDCA is necessary for the full expression of its protective actions.NEW & NOTEWORTHY On the basis of its cytoprotective and anti-inflammatory actions, the secondary bile acid ursodeoxycholic acid (UDCA) has well-established uses in both traditional and Western medicine. We identify a new role for the primary metabolite of UDCA, lithocholic acid, as a potent inhibitor of intestinal inflammatory responses, and we present data to suggest that microbial metab-olism of UDCA is necessary for the full expression of its protective effects against colonic inflammation
Phospholipase C-ε Regulates Epidermal Morphogenesis in Caenorhabditis elegans
Migration of cells within epithelial sheets is an important feature of embryogenesis and other biological processes. Previous work has demonstrated a role for inositol 1,4,5-trisphosphate (IP3)-mediated calcium signalling in the rearrangement of epidermal cells (also known as hypodermal cells) during embryonic morphogenesis in Caenorhabditis elegans. However the mechanism by which IP3 production is stimulated is unknown. IP3 is produced by the action of phospholipase C (PLC). We therefore surveyed the PLC family of C. elegans using RNAi and mutant strains, and found that depletion of PLC-1/PLC-ε produced substantial embryonic lethality. We used the epithelial cell marker ajm-1::gfp to follow the behaviour of epidermal cells and found that 96% of the arrested embryos have morphogenetic defects. These defects include defective ventral enclosure and aberrant dorsal intercalation. Using time-lapse confocal microscopy we show that the migration of the ventral epidermal cells, especially of the leading cells, is slower and often fails in plc-1(tm753) embryos. As a consequence plc-1 loss of function results in ruptured embryos with a Gex phenotype (gut on exterior) and lumpy larvae. Thus PLC-1 is involved in the regulation of morphogenesis. Genetic studies using gain- and loss-of-function alleles of itr-1, the gene encoding the IP3 receptor in C. elegans, demonstrate that PLC-1 acts through ITR-1. Using RNAi and double mutants to deplete the other PLCs in a plc-1 background, we show that PLC-3/PLC-γ and EGL-8/PLC-β can compensate for reduced PLC-1 activity. Our work places PLC-ε into a pathway controlling epidermal cell migration, thus establishing a novel role for PLC-ε
Neuropathic Pain Phenotype Does Not Involve the NLRP3 Inflammasome and Its End Product Interleukin-1β in the Mice Spared Nerve Injury Model.
The NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome is one of the main sources of interleukin-1β (IL-1β) and is involved in several inflammatory-related pathologies. To date, its relationship with pain has not been studied in depth. The aim of our study was to elucidate the role of NLRP3 inflammasome and IL-1β production on neuropathic pain. Results showed that basal pain sensitivity is unaltered in NLRP3-/- mice as well as responses to formalin test. Spared nerve injury (SNI) surgery induced the development of mechanical allodynia and thermal hyperalgesia in a similar way in both genotypes and did not modify mRNA levels of the NLRP3 inflammasome components in the spinal cord. Intrathecal lipopolysaccharide (LPS) injection increases apoptosis-associated speck like protein (ASC), caspase-1 and IL-1β expression in both wildtype and NLRP3-/- mice. Those data suggest that NLRP3 is not involved in neuropathic pain and also that other sources of IL-1β are implicated in neuroinflammatory responses induced by LPS
[18F]fluorination/decarbonylation: New route to aryl [18F]fluorides
A new route to aryl [18F]fluorides without electron withdrawing ring substituents has been developed. [18F]Fluorobenzaldehydes, prepared from no-carrier-added (NCA) [18F]fluoride using nucleophilic aromatic substitution of fluoro or nitro groups, were decarbonylated using palladium on charcoal (Pd-C). By this approach 2-methoxy-4-nitrobenzaldehyde was converted to NCA 3-[18F]fluorophenol (25-30%, EOB) and 4-fluoro-2-methoxy-5-methylbenzaldehyde to carrier-added (CA) 3-[18F]fluoro-4-methylphenol (30-40%, EOB). Overall synthesis time was about 2 h. Since the 4-fluoro-2-methoxy-5-methylbenzaldehyde was in turn prepared by methylation and regiospecific formylation of 3-fluoro-4-methylphenol, the overall process represents use of a removable activating group for nucleophilic aromatic substitution with [18F]fluoride for preparation of CA and NCA aryl [18F]fluorides.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29665/1/0000754.pd
Temporal stability in the genetic structure of Sarcoptes scabiei under the host-taxon law: empirical evidences from wildlife-derived Sarcoptes mite in Asturias, Spain
<p>Abstract</p> <p>Background</p> <p>Implicitly, parasite molecular studies assume temporal genetic stability. In this study we tested, for the first time to our knowledge, the extent of changes in genetic diversity and structure of <it>Sarcoptes </it>mite populations from Pyrenean chamois (<it>Rupicapra pyrenaica</it>) in Asturias (Spain), using one multiplex of 9 microsatellite markers and <it>Sarcoptes </it>samples from sympatric Pyrenean chamois, red deer (<it>Cervus elaphus</it>), roe deer (<it>Capreolus capreolus</it>) and red fox (<it>Vulpes vulpes</it>).</p> <p>Results</p> <p>The analysis of an 11-years interval period found little change in the genetic diversity (allelic diversity, and observed and expected heterozygosity). The temporal stability in the genetic diversity was confirmed by population structure analysis, which was not significantly variable over time. Population structure analysis revealed temporal stability in the genetic diversity of <it>Sarcoptes </it>mite under the host-taxon law (herbivore derived- and carnivore derived-<it>Sarcoptes </it>mite) among the sympatric wild animals from Asturias.</p> <p>Conclusions</p> <p>The confirmation of parasite temporal genetic stability is of vital interest to allow generalizations to be made, which have further implications regarding the genetic structure, epidemiology and monitoring protocols of the ubiquitous <it>Sarcoptes </it>mite. This could eventually be applied to other parasite species.</p
- …