6,136 research outputs found

    Detection of single electron spin resonance in a double quantum dot

    Full text link
    Spin-dependent transport measurements through a double quantum dot are a valuable tool for detecting both the coherent evolution of the spin state of a single electron as well as the hybridization of two-electron spin states. In this paper, we discuss a model that describes the transport cycle in this regime, including the effects of an oscillating magnetic field (causing electron spin resonance) and the effective nuclear fields on the spin states in the two dots. We numerically calculate the current flow due to the induced spin flips via electron spin resonance and we study the detector efficiency for a range of parameters. The experimental data are compared with the model and we find a reasonable agreement.Comment: 7 pages, 5 figures. To be published in Journal of Applied Physics, proceedings ICPS 200

    Evaluation of a spring-powered captive bolt gun for killing kangaroo pouch young

    Get PDF
    Context: During commercial harvesting or non-commercial kangaroo culling programs, dependent young of shot females are required to be euthanased to prevent suffering and because they would be unlikely to survive. However, the current method for killing pouch young, namely a single, forceful blow to the base of the skull, is applied inconsistently by operators and perceived by the public to be inhumane. Aims: To determine whether an alternative method for killing pouch young, namely a spring-operated captive bolt gun, is effective at causing insensibility in kangaroo pouch young. Methods: Trials of spring-operated captive bolt guns were conducted first on the heads of 15 dead kangaroo young and then on 21 live pouch young during commercial harvesting. We assessed the effectiveness at causing insensibility in live animals and damage caused to specific brain areas. We also measured depth of bolt penetration and skull thickness. Performance characteristics (e.g. bolt velocity) of two types of spring-operated guns were also measured and compared with cartridge-powered devices. Key results: When tested on the heads of dead animals, the spring-operated captive bolt gun consistently produced a large entrance cavity and a well defined wound tract, which extended into the cerebrum, almost extending the full thickness of the brain, including the brainstem. When tested on live pouch young, the captive bolt gun caused immediate insensibility in only 13 of 21 animals. This 62% success rate is significantly below the 95% minimum acceptable threshold for captive bolt devices in domestic animal abattoirs. Failure to stun was related to bolt placement, but other factors such as bolt velocity, bolt diameter and skull properties such as thickness and hardness might have also contributed. Spring-operated captive bolt guns delivered 20 times less kinetic energy than did cartridge-powered devices. Conclusions: Spring-operated captive bolt guns cannot be recommended as an acceptable or humane method for stunning or killing kangaroo pouch young. Implications: Captive bolt guns have potential as a practical alternative to blunt head trauma for effective euthanasia and reducing animal (and observer) distress. However, operators must continue to use the existing prescribed killing methods until cartridge-powered captive bolt guns have been trialled as an alternative bolt propelling method. Additional keywords: animal welfare, blunt trauma, culling, euthanasia, humaneness, kangaroo harvesting

    Frequency dependence of surface acoustic wave swimming.

    Get PDF
    This is the author accepted manuscript. The final version is available from The Royal Society.Surface acoustic waves (SAWs) are elastic waves that can be excited directly on the surface of piezoelectric crystals using a transducer, leading to their exploitation for numerous technological applications, including for example microfluidics. Recently, the concept of SAW streaming, which underpins SAW microfluidics, was extended to make the first experimental demonstration of 'SAW swimming', where instead of moving water droplets on the surface of a device, SAWs are used as a propulsion mechanism. Using theoretical analysis and experiments, we show that the SAW swimming force can be controlled directly by changing the SAW frequency, due to attenuation and changing force distributions within each SAW streaming jet. Additionally, an optimum frequency exists which generates a maximum SAW swimming force. The SAW frequency can therefore be used to control the efficiency and forward force of these SAW swimming devices. The SAW swimming propulsion mechanism also mimics that used by many microorganisms, where propulsion is produced by a cyclic distortion of the body shape. This improved understanding of SAW swimming provides a test-bed for exploring the science of microorganism swimming, and could bring new insight to the evolutionary significance for the length and beating frequency of swimming microbial flagella.Leverhulme Trust Research Projec

    Federal tax policies, congressional voting and natural resources

    Get PDF
    Can abundance of natural resources affect legislators' voting behaviour over federal tax policies? We construct a political economy model of a federalized economy with district heterogeneity in natural resource abundance. The model shows that representatives of natural resource-rich districts are more (less) willing to vote in favour of federal tax increases (decreases). This occurs because resource-rich districts are less responsive to federal tax changes due to the immobile nature of their natural resources. We test the model's predictions using data on roll-call votes in the US House of Representatives over the major federal tax bills initiated during the period of 1945–2003, in conjunction with the presence of active giant oil fields in US congressional districts. Our identification strategy rests on plausibly exogenous giant oil field discoveries and exploitation and narrative-based aggregate federal tax shocks that are exogenous to individual congressional districts and legislators. We find that: (i) resource-rich congressional districts are less responsive to changes in federal taxes and (ii) representatives of resource-rich congressional districts are more (less) supportive of federal tax increases (decreases), controlling for legislator, congressional district and state indicators. Our results indicate that resource richness is approximately half as dominant as the main determinant, namely party affiliation, in driving legislators' voting behaviour over federal tax policies

    Carbon isotope effect in superconducting MgCNi_3

    Full text link
    The effect of Carbon isotope substitution on T_c in the intermetallic perovskite superconductor MgCNi_3 is reported. Four independent groups of samples were synthesized and characterized. The average T_c for the Carbon-12 samples was found to be 7.12(2) K and the average T_c for the Carbon-13 samples was found to be 6.82(2) K. The resulting carbon isotope effect coefficient is alfa_C = 0.54(3). This indicates that carbon-based phonons play a critical role in the presence of superconductivity in this compound.Comment: To be published in Phys. Rev. B. 4 pages, 1 figur

    Cyclotron resonance in the layered perovskite superconductor Sr2RuO4

    Full text link
    We report a detailed study of the magnetic-field-orientation dependence of the millimetre-wave magnetoconductivity of the superconductor Sr2RuO4 We find two harmonic series of cyclotron resonances. We assign the first, corresponding to a quasiparticle mass of 4.29±0.05me4.29 \pm 0.05 m_{\rm e}, where mem_{\rm e} is the free-electron mass, to the β\beta Fermi-surface section. We assign the second series, which contains only odd harmonics, to cyclotron resonance of the γ\gamma Fermi-surface section, yielding a quasiparticle mass of 12.35±0.20me12.35 \pm 0.20 m_{\rm e}. A third, single cyclotron resonance, corresponding to a quasiparticle mass of 5.60±0.03me5.60 \pm 0.03 m_{\rm e}, is attributed to the α\alpha Fermi-surface section. In addition, we find a very strong absorption mode in the presence of a magnetic field component parallel to the quasi-two-dimensional planes of the sample. Its dependence on the orientation of the magnetic field cannot be described in the context of conventional cyclotron resonance, and the origin of this mode is not yet clear.Comment: Submitted to J. Phys. Cond. Ma

    A measure of centrality based on the spectrum of the Laplacian

    Get PDF
    We introduce a family of new centralities, the k-spectral centralities. k-Spectral centrality is a measurement of importance with respect to the deformation of the graph Laplacian associated with the graph. Due to this connection, k-spectral centralities have various interpretations in terms of spectrally determined information. We explore this centrality in the context of several examples. While for sparse unweighted networks 1-spectral centrality behaves similarly to other standard centralities, for dense weighted networks they show different properties. In summary, the k-spectral centralities provide a novel and useful measurement of relevance (for single network elements as well as whole subnetworks) distinct from other known measures.Comment: 12 pages, 6 figures, 2 table

    Swift-UVOT detection of GRB 050318

    Full text link
    We present observations of GRB 050318 by the Ultra-Violet and Optical Telescope (UVOT) on-board the Swift observatory. The data are the first detections of a Gamma Ray Burst (GRB) afterglow decay by the UVOT instrument, launched specifically to open a new window on these transient sources. We showcase UVOTs ability to provide multi-color photometry and the advantages of combining UVOT data with simultaneous and contemporaneous observations from the high-energy detectors on the Swift spacecraft. Multiple filters covering 1,800-6,000 Angstroms reveal a red source with spectral slope steeper than the simultaneous X-ray continuum. Spectral fits indicate that the UVOT colors are consistent with dust extinction by systems at z = 1.2037 and z = 1.4436, redshifts where absorption systems have been pre-identified. However, the data can be most-easily reproduced with models containing a foreground system of neutral gas redshifted by z = 2.8 +/- 0.3. For both of the above scenarios, spectral and decay slopes are, for the most part, consistent with fireball expansion into a uniform medium, provided a cooling break occurs between the energy ranges of the UVOT and Swifts X-ray instrumentation.Comment: 15 pages, 4 figures, ApJ Letters, in pres

    Cancer Research UK procedures in manufacture and toxicology of radiotracers intended for Pre-phase I positron emission tomography studies in cancer patients

    Get PDF
    Radiolabelled compounds formulated for injection (radiopharmaceuticals), are increasingly being employed in drug development studies. These can be used in tracer amounts for either pharmacokinetic or pharmacodynamic studies. Such radiotracer studies can also be carried out early in man, even prior to conventional Phase I clinical testing. The aim of this document is to describe procedures for production and safety testing of oncology radiotracers developed for imaging by positron emission tomography in cancer patients. We propose strategies for overcoming the inability to produce compounds in sufficient quantities via the radiosynthetic routes for full chemical characterisation and toxicology testing including (i) independent confirmation as far as possible that the stable compound associated with the radiopharmaceutical is identical to the non-labelled compound, (ii) animal toxicity studies with ⩾10 times (typically 100 times) the intended tracer dose in humans scaled by body surface area, and (iii) patient monitoring during the radiotracer positron emission tomography clinical trial
    corecore