52 research outputs found

    An EMG-Assisted Muscle-Force Driven Finite Element Analysis Pipeline to Investigate Joint- and Tissue-Level Mechanical Responses in Functional Activities : Towards a Rapid Assessment Toolbox

    Get PDF
    Publisher Copyright: © 1964-2012 IEEE.Joint tissue mechanics (e.g., stress and strain) are believed to have a major involvement in the onset and progression of musculoskeletal disorders, e.g., knee osteoarthritis (KOA). Accordingly, considerable efforts have been made to develop musculoskeletal finite element (MS-FE) models to estimate highly detailed tissue mechanics that predict cartilage degeneration. However, creating such models is time-consuming and requires advanced expertise. This limits these complex, yet promising, MS-FE models to research applications with few participants and makes the models impractical for clinical assessments. Also, these previously developed MS-FE models have not been used to assess activities other than gait. This study introduces and verifies a semi-automated rapid state-of-the-art MS-FE modeling and simulation toolbox incorporating an electromyography- (EMG) assisted MS model and a muscle-force driven FE model of the knee with fibril-reinforced poro(visco)elastic cartilages and menisci. To showcase the usability of the pipeline, we estimated joint- and tissue-level knee mechanics in 15 KOA individuals performing different daily activities. The pipeline was verified by comparing the estimated muscle activations and joint mechanics to existing experimental data. To determine the importance of the EMG-assisted MS analysis approach, results were compared to those from the same FE models but driven by static-optimization-based MS models. The EMG-assisted MS-FE pipeline bore a closer resemblance to experiments compared to the static-optimization-based MS-FE pipeline. Importantly, the developed pipeline showed great potential as a rapid MS-FE analysis toolbox to investigate multiscale knee mechanics during different activities of individuals with KOA.Peer reviewe

    Near infrared spectroscopic evaluation of biochemical and crimp properties of knee joint ligaments and patellar tendon

    Get PDF
    Knee ligaments and tendons play an important role in stabilizing and controlling the motions of the knee. Injuries to the ligaments can lead to abnormal mechanical loading of the other supporting tissues (e.g., cartilage and meniscus) and even osteoarthritis. While the condition of knee ligaments can be examined during arthroscopic repair procedures, the arthroscopic evaluation suffers from subjectivity and poor repeatability. Near infrared spectroscopy (NIRS) is capable of non-destructively quantifying the composition and structure of collagen-rich connective tissues, such as articular cartilage and meniscus. Despite the similarities, NIRS-based evaluation of ligament composition has not been previously attempted. In this study, ligaments and patellar tendon of ten bovine stifle joints were measured with NIRS, followed by chemical and histological reference analysis. The relationship between the reference properties of the tissue and NIR spectra was investigated using partial least squares regression. NIRS was found to be sensitive towards the water (R2CV = .65) and collagen (R2CV = .57) contents, while elastin, proteoglycans, and the internal crimp structure remained undetectable. As collagen largely determines the mechanical response of ligaments, we conclude that NIRS demonstrates potential for quantitative evaluation of knee ligaments.publishedVersionPeer reviewe

    Patellar tendon properties distinguish elite from non-elite soccer players and are related to peak horizontal but not vertical power

    Get PDF
    Purpose: The aims of our study were to investigate differences in tendon properties between elite and non-elite soccer players, and to establish whether tendon properties were related to power assessed during unilateral jumps in different directions. Methods: Elite (n=16; age, 18.1 ± 1.0yrs) and non-elite (n=13; age, 22.3 ± 2.7yrs) soccer players performed three repetitions of each type (unilateral vertical, unilateral horizontal-forward and unilateral medial) of countermovement jump (CMJ) on a force plate. Patellar tendon (PT) cross-sectional area (CSA), elongation, stiffness and Young’s modulus (measured at the highest common force interval) were assessed with ultrasonography and isokinetic dynamometry. Results: Elite soccer players demonstrated greater PT elongation (6.83±1.87 vs. 4.92±1.88 mm, P=0.011) and strain (11.73±3.25 vs. 8.38±3.06 %, P=0.009) than non-elite. Projectile range and peak horizontal power during unilateral horizontal-forward CMJ correlated positively with tendon elongation (r=0.657 and 0.693, P<0.001) but inversely with Young’s modulus (r=-0.376 and -0.402, P=0.044 and 0.031). Peak medial power during unilateral medial CMJ correlated positively with tendon elongation (r=0.658, P=<0.001) but inversely with tendon stiffness (r=-0.368, P=0.050). No tendon property correlated with unilateral vertical CMJ performance (r≤0.168; P≥0.204). Conclusions: Patellar tendon strain was greater in elite vs. non-elite soccer players and can therefore be considered an indicator of elite soccer playing status. Moreover, a more compliant patellar tendon appears to facilitate unilateral horizontal-forward and medial, but not vertical CMJ performance in soccer players. These findings should be considered when prescribing the detail of talent selection and development protocols related to direction-specific power in elite soccer players

    Ageing, Muscle Power and Physical Function: A Systematic Review and Implications for Pragmatic Training Interventions.

    Get PDF
    BACKGROUND: The physiological impairments most strongly associated with functional performance in older people are logically the most efficient therapeutic targets for exercise training interventions aimed at improving function and maintaining independence in later life. OBJECTIVES: The objectives of this review were to (1) systematically review the relationship between muscle power and functional performance in older people; (2) systematically review the effect of power training (PT) interventions on functional performance in older people; and (3) identify components of successful PT interventions relevant to pragmatic trials by scoping the literature. METHODS: Our approach involved three stages. First, we systematically reviewed evidence on the relationship between muscle power, muscle strength and functional performance and, second, we systematically reviewed PT intervention studies that included both muscle power and at least one index of functional performance as outcome measures. Finally, taking a strong pragmatic perspective, we conducted a scoping review of the PT evidence to identify the successful components of training interventions needed to provide a minimally effective training dose to improve physical function. RESULTS: Evidence from 44 studies revealed a positive association between muscle power and indices of physical function, and that muscle power is a marginally superior predictor of functional performance than muscle strength. Nine studies revealed maximal angular velocity of movement, an important component of muscle power, to be positively associated with functional performance and a better predictor of functional performance than muscle strength. We identified 31 PT studies, characterised by small sample sizes and incomplete reporting of interventions, resulting in less than one-in-five studies judged as having a low risk of bias. Thirteen studies compared traditional resistance training with PT, with ten studies reporting the superiority of PT for either muscle power or functional performance. Further studies demonstrated the efficacy of various methods of resistance and functional task PT on muscle power and functional performance, including low-load PT and low-volume interventions. CONCLUSIONS: Maximal intended movement velocity, low training load, simple training methods, low-volume training and low-frequency training were revealed as components offering potential for the development of a pragmatic intervention. Additionally, the research area is dominated by short-term interventions producing short-term gains with little consideration of the long-term maintenance of functional performance. We believe the area would benefit from larger and higher-quality studies and consideration of optimal long-term strategies to develop and maintain muscle power and physical function over years rather than weeks

    The role of muscle strength on tendon adaptability in old age.

    Get PDF
    PURPOSE: The purpose of the study was to determine: (1) the relationship between ankle plantarflexor muscle strength and Achilles tendon (AT) biomechanical properties in older female adults, and (2) whether muscle strength asymmetries between the individually dominant and non-dominant legs in the above subject group were accompanied by inter-limb AT size differences. METHODS: The maximal generated AT force, AT stiffness, AT Young's modulus, and AT cross-sectional area (CSA) along its length were determined for both legs in 30 women (65 ± 7 years) using dynamometry, ultrasonography, and magnetic resonance imaging. RESULTS: No between-leg differences in triceps surae muscle strength were identified between dominant (2798 ± 566 N) and non-dominant limb (2667 ± 512 N). The AT CSA increased gradually in the proximo-distal direction, with no differences between the legs. There was a significant correlation (P < 0.05) of maximal AT force with AT stiffness (r = 0.500) and Young's modulus (r = 0.414), but only a tendency with the mean AT CSA. However, region-specific analysis revealed a significant relationship between maximal AT force and the proximal part of the AT, indicating that this region is more likely to display morphological adaptations following an increase in muscle strength in older adults. CONCLUSIONS: These findings demonstrate that maximal force-generation capabilities play a more important role in the variation of AT stiffness and material properties than in tendon CSA, suggesting that exercise-induced increases in muscle strength in older adults may lead to changes in tendon stiffness foremost due to alterations in material rather than in its size

    Physical activity in older age: perspectives for healthy ageing and frailty.

    Get PDF
    Regular physical activity helps to improve physical and mental functions as well as reverse some effects of chronic disease to keep older people mobile and independent. Despite the highly publicised benefits of physical activity, the overwhelming majority of older people in the United Kingdom do not meet the minimum physical activity levels needed to maintain health. The sedentary lifestyles that predominate in older age results in premature onset of ill health, disease and frailty. Local authorities have a responsibility to promote physical activity amongst older people, but knowing how to stimulate regular activity at the population-level is challenging. The physiological rationale for physical activity, risks of adverse events, societal and psychological factors are discussed with a view to inform public health initiatives for the relatively healthy older person as well as those with physical frailty. The evidence shows that regular physical activity is safe for healthy and for frail older people and the risks of developing major cardiovascular and metabolic diseases, obesity, falls, cognitive impairments, osteoporosis and muscular weakness are decreased by regularly completing activities ranging from low intensity walking through to more vigorous sports and resistance exercises. Yet, participation in physical activities remains low amongst older adults, particularly those living in less affluent areas. Older people may be encouraged to increase their activities if influenced by clinicians, family or friends, keeping costs low and enjoyment high, facilitating group-based activities and raising self-efficacy for exercise

    Alterations in the Functional Knee Alignment Are Not an Effective Strategy to Modify the Mediolateral Distribution of Knee Forces During Closed Kinetic Chain Exercises

    No full text
    Pain felt while performing rehabilitation exercises could be a reason for the low adherence of knee osteoarthritis patients to physical rehabilitation. Reducing compressive forces on the most affected knee regions may help to mitigate the pain. Knee frontal plane positioning with respect to pelvis and foot (functional knee alignment) has been shown to modify the mediolateral distribution of the tibiofemoral joint contact force in walking. Hence, different functional knee alignments could be potentially used to modify joint loading during rehabilitation exercises. The aim was to understand whether utilizing different alignments is an effective strategy to unload specific knee areas while performing rehabilitation exercises. Eight healthy volunteers performed 5 exercises with neutral, medial, and lateral knee alignment. A musculoskeletal model was modified for improved prediction of tibiofemoral contact forces and used to evaluate knee joint kinematics, moments, and contact forces. Functional knee alignment had only a small and inconsistent effect on the mediolateral distribution joint contact force. Moreover, the magnitude of tibiofemoral and patellofemoral contact forces, knee moments, and measured muscle activities was not significantly affected by the alignment. Our results suggest that altering the functional knee alignment is not an effective strategy to unload specific knee regions in physical rehabilitation.Peer reviewe

    Automated preprocessing of near infrared spectroscopic data

    No full text
    Preprocessing is important for near infrared spectroscopy applications as it reduces noise and improves prediction accuracy of models. We present a toolbox for automatically combining different preprocessing strategies for spectral data

    EMG-Assisted Muscle Force Driven Finite Element Model of the Knee Joint with Fibril-Reinforced Poroelastic Cartilages and Menisci

    No full text
    Abnormal mechanical loading is essential in the onset and progression of knee osteoarthritis. Combined musculoskeletal (MS) and finite element (FE) modeling is a typical method to estimate load distribution and tissue responses in the knee joint. However, earlier combined models mostly utilize static-optimization based MS models and muscle force driven FE models typically use elastic materials for soft tissues or analyze specific time points of gait. Therefore, here we develop an electromyography-assisted muscle force driven FE model with fibril-reinforced poro(visco)elastic cartilages and menisci to analyze knee joint loading during the stance phase of gait. Moreover, since ligament pre-strains are one of the important uncertainties in joint modeling, we conducted a sensitivity analysis on the pre-strains of anterior and posterior cruciate ligaments (ACL and PCL) as well as medial and lateral collateral ligaments (MCL and LCL). The model produced kinematics and kinetics consistent with previous experimental data. Joint contact forces and contact areas were highly sensitive to ACL and PCL pre-strains, while those changed less cartilage stresses, fibril strains, and fluid pressures. The presented workflow could be used in a wide range of applications related to the aetiology of cartilage degeneration, optimization of rehabilitation exercises, and simulation of knee surgeries.peerReviewe
    • …
    corecore