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Abstract

Purpose The purpose of the study was to determine: (1) the relationship between ankle plantarlexor muscle strength 

and Achilles tendon (AT) biomechanical properties in older female adults, and (2) whether muscle strength asymmetries 

between the individually dominant and non-dominant legs in the above subject group were accompanied by inter-limb AT 

size diferences.

Methods The maximal generated AT force, AT stifness, AT Young’s modulus, and AT cross-sectional area (CSA) along 

its length were determined for both legs in 30 women (65 ± 7 years) using dynamometry, ultrasonography, and magnetic 

resonance imaging.

Results No between-leg diferences in triceps surae muscle strength were identiied between dominant (2798 ± 566 N) and 

non-dominant limb (2667 ± 512 N). The AT CSA increased gradually in the proximo-distal direction, with no diferences 

between the legs. There was a signiicant correlation (P < 0.05) of maximal AT force with AT stifness (r = 0.500) and Young’s 

modulus (r = 0.414), but only a tendency with the mean AT CSA. However, region-speciic analysis revealed a signiicant 

relationship between maximal AT force and the proximal part of the AT, indicating that this region is more likely to display 

morphological adaptations following an increase in muscle strength in older adults.

Conclusions These indings demonstrate that maximal force-generation capabilities play a more important role in the vari-

ation of AT stifness and material properties than in tendon CSA, suggesting that exercise-induced increases in muscle 

strength in older adults may lead to changes in tendon stifness foremost due to alterations in material rather than in its size.

Keywords Aging · Maximum muscle force · Triceps surae · Tendon stifness · Young’s modulus · Cross-sectional area

Abbreviations

ANOVA  Analysis of variance

AT  Achilles tendon

CSA  Cross-sectional area

MRI  Magnetic resonance imaging

MVC  Maximum voluntary contraction

SD  Standard deviation

SLS  Single leg stance

TUG   Timed up and go test
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Introduction

Tendons transmit muscle forces to the skeleton to allow 

body movement and interaction with the environment. 

Due to their viscoelastic behavior, tendons of the lower 

extremity can increase muscle eiciency during terrestrial 

locomotion by providing more favorable conditions for 

the contractile elements and by storing strain energy (Ker 

et al. 1987; Biewener and Roberts 2000; Hof et al. 2002; 

Lichtwark and Wilson 2008). Indeed, associations between 

tendon biomechanical properties and muscle performance 

capabilities have often been reported throughout the human 

lifespan (Arampatzis et al. 2007b; Bojsen-Møller et al. 2005; 

Waugh et al. 2013; Quinlan et al. 2018). Previous studies 

(Magnusson et al. 2008; Arampatzis et al. 2010; Seynnes 

et al. 2015; Wiesinger et al. 2015) have convincingly shown 

that despite their poor vascularity, human tendons respond 

to increased mechanical loading by increasing their tensile 

stifness. Similar to other load-bearing structures, mecha-

notransduction is believed to be responsible for the tendons 

ability to adapt (Chiquet et al. 2009).

From a biomechanical point of view, increases in tendon 

stifness can be brought about by improvements in tendon’s 

material (increased Young’s modulus) or tendon hypertro-

phy (increases in its cross-sectional area; CSA). However, 

previous studies show somewhat conlicting results as to 

which of the above two adaptive mechanisms takes place in 

response to changes in mechanical loading. On the one hand, 

medium-term exercise intervention studies lasting 12–14 

weeks, which were efective in improving muscle strength, 

have also shown to improve tendon stifness through a con-

current increase in both Young’s modulus and tendon CSA 

(Arampatzis et al. 2007a; Kongsgaard et al. 2007; Seynnes 

et al. 2009; Bohm et al. 2014). However, some earlier cross-

sectional studies examining habitual sport-induced loading 

demonstrate that tendons adjust their stifness to adapt to 

changes in physiological loading foremost through mor-

phological changes rather than altering their material prop-

erties (Rosager et al. 2002; Couppé et al. 2008; Seynnes 

et al. 2013), which is in line with animal studies (Pollock 

and Shadwick 1994). In contrast, other cross-sectional and 

interventional studies (Bayliss et al. 2016; Kubo et al. 2001; 

Reeves et al. 2003; Malliaras et al. 2013) show that difer-

ences in tendon stifness seem to be entirely or largely due 

to altered material properties. Furthermore, it seems that at 

least in younger individuals, tendon material and morpho-

logical adaptations occur over diferent time frames, with 

changes in material properties taking place earlier within 

an exercise training programme, whereas tendon hypertro-

phy appears to be a longer term adaptive response (Kjaer 

et al. 2009; Heinemeier and Kjaer 2011; Bohm et al. 2015a; 

Wiesinger et al. 2015). What leads to these diverse tendon 

adaptations to increased mechanical loading is not yet fully 

understood.

Along with a deterioration in muscle structure and func-

tion (Frontera et al. 2000), several studies have reported that 

the aging process is associated with a gradual decline in 

tendon stifness and Young’s modulus (Karamanidis and 

Arampatzis 2005; Onambele-Pearson et al. 2006). This can 

be explained by cellular, mechanical, biochemical, and path-

ological changes (Noyes and Grood 1976; Vogel 1991; Kjaer 

2004; Komatsu et al. 2004), which may limit the adaptabil-

ity of collagenous tissue to environmental mechanical stress 

(Tuite et al. 1997). Furthermore, in addition to changes due 

to the aging process per se, alterations in mechanical stress 

may afect the tendon in old age. Chronically diminished 

physical activity, which is a common feature in old age, may 

reduce the mechanical stimulus required to maintain muscle 

size, muscle strength, and tendon properties. This notion is 

supported by earlier in vivo bed rest studies (20–90 days 

chronic inactivity) demonstrating a reduction not only in 

muscle strength and size, but also in tendon stifness and 

Young’s modulus (Kubo et al. 2000, 2004; Reeves et al. 

2005). Therefore, as a consequence of the altered mechanical 

environment in which aged tendons often operate, smaller 

contractile forces are being generated and applied to the ten-

don, thus reducing the mechanical stimulus which is impor-

tant for preserving tendon mechanical properties. However, 

exercise may be efective in counteracting the deterioration 

in muscle–tendon unit structure and function caused by the 

above combined efect of the aging process and inactivity, 

leading to increases in muscle strength, muscle size, ten-

don stifness, and tendon Young’ modulus (Reeves et al. 

2003; Onambele-Pearson and Pearson 2012; Grosset et al. 

2014; Karamanidis et al. 2014; Epro et al. 2017). Most exer-

cise intervention studies in older subjects have reported an 

increase in Young’s modulus as the sole mechanism under-

pinning the increase in tendon stifness post-training (Reeves 

et al. 2003; Onambele-Pearson and Pearson 2012; Grosset 

et al. 2014). As a consequence, contrary to previous indings 

in younger subjects (Arampatzis et al. 2007a; Kongsgaard 

et al. 2007; Seynnes et al. 2009; Bohm et al. 2014) it has 

been suggested that tendon hypertrophy cannot be achieved 

through physical exercise in old age. In marked contrast with 

this notion, we recently showed that exercise-induced ten-

don hypertrophy can take place in older adults (Epro et al. 

2017). However, it must be stressed that, as opposed to pre-

vious training studies in older people, we acquired a large 

number of scans along the tendon, thus allowing identiica-

tion of regional CSA adaptations, which might have gone 

undetected in earlier investigations due to the limited tendon 

regions scanned.

In the current study, we analyzed the ankle plantarlexor 

muscle strength and Achilles tendon (AT) stifness, AT CSA, 

and AT Young’s modulus of older women to gain insight 
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into the diverse adaptability of older tendons to mechani-

cal loading, as speciied in the studies above (Reeves et al. 

2003; Onambele-Pearson and Pearson 2012; Grosset et al. 

2014; Karamanidis et al. 2014; Epro et al. 2017). Specii-

cally, we aimed to establish if similar to young adults, there 

is an association between ankle plantarlexor muscle strength 

(i.e., maximal AT force) and AT mechanical, material, and 

morphological properties in a sample of older female adults. 

It was hypothesized that maximal AT force would be asso-

ciated with AT biomechanical properties in this group of 

older adults, showing higher correlation coeicients with 

AT Young’s modulus than with AT CSA. Moreover, we 

hypothesized that asymmetry between legs in maximal AT 

force would not be accompanied by diferences in AT CSA.

Materials and methods

Participants and experimental setup

The study was conducted with 30 older female volunteers 

aged between 60 and 75 years (mean ± SD: age: 65 ± 7 years; 

body mass: 67 ± 9 kg; body height: 166 ± 7 cm) from a large-

scale knee osteoarthritis study (N = 38, Kellgren–Lawrence 

score: 2–3) from a sub-sample of our previous study (Epro 

et al. 2017), who agreed to have both limbs scanned using 

magnetic resonance imaging (MRI). Exclusion criteria were 

previous AT ruptures, AT pain or injury (e.g., tendinopathy) 

or any other musculoskeletal impairments in the lower limbs 

(e.g., joint pain during locomotion) within the last 2 years. 

Furthermore, the assessed SF-36 general health question-

naire (average scale value 75.4%) and clinical functional 

tests such as SLS (single leg stance; average of 40.3 s; using 

test duration of 45 s) and TUG (timed up and go test; aver-

age of 7.3 s) assured that the subjects were generally healthy 

for their age group. In addition, all participants were taking 

part in some form of organized physical activity (e.g., nor-

dic walking, hiking, swimming, bike riding, aqua-jogging, 

moderate resistance training), 2–3 times a week on average. 

After being informed about the study, all subjects gave their 

written consent to the experimental procedures, which were 

approved by the human ethics committees of the German 

Sport University Cologne as well as the University of Bonn 

(according to the Declaration of Helsinki).

To examine whether tendon properties are associated with 

maximal force production capacity, the irst analysis consid-

ered only the individually dominant leg (preferred leg for 

step initiation; as in Epro et al. 2017). For investigating the 

inter-limb diferences in AT force and AT CSA, the individu-

ally dominant leg and contralateral non-dominant leg were 

additionally analyzed.

Measurement of Achilles tendon cross‑sectional 
area

MRI scans were obtained in a whole-body 3 T magnet 

(Ingenia 3T, Philips Healthcare, Best, the Netherlands) to 

scan and quantify the CSA of the free AT along the entire 

tendon length. MRI sequences were acquired in transversal 

and sagittal orientation using a high-resolution single-shot 

T1-weighted 3D gradient echo sequence (e-THRIVE). For 

fat suppression, an additional spectral attenuated inver-

sion recovery (SPAIR) pulse was used. Sequence param-

eters were as follows: acquisition matrix = 420 × 372, 

acquired voxel size = 1.00 × 1.00 × 2.00 mm, reconstructed 

voxel size = 0.58 × 0.58 × 1.00  mm, time of repetition 

(TR) = 3.6  ms, time of echo (TE) = 1.7  ms, flip angle 

(α) = 10°, and parallel imaging factor (SENSE) = 2. Dur-

ing scanning the subjects lay in a supine position with both 

knees and hips fully extended and the ankle joints ixed at 

20° plantarlexion (AT in a near-slack position; DeMonte 

et al. 2006). In the sagittal images recorded (Fig. 1a), the 

proximal and distal ends of the free AT were identiied at 

the soleus myotendinous junction and the osteotendinous 

junction in the calcaneum, respectively. In every transversal-

plane image (Fig. 1b) along the free AT, the tendon’s bound-

aries were outlined manually using the Java-based public 

image processing and analysis software ImageJ (National 

Institutes of Health, Bethesda, MD, USA). The coordinates 

of the AT boundaries of each image were exported and fur-

ther processed using Matlab (The Mathworks, Natick, MA, 

USA), making it possible to create a contour plot for each 

AT (Fig. 1c). The length of the AT was deined as the curved 

path through the centroids of the single cross sections, which 

were determined by means of Delaunay triangulation (Bohm 

et al. 2016) between the two conining landmarks. The same 

investigator manually tracked all MRI images. Subsequently, 

the average CSA value of the free AT between 10 and 100% 

length (mean AT CSA) was determined in both legs. Fur-

thermore, to analyze the region-speciic diferences in AT 

CSA, an average CSA was calculated for each 10% free AT 

length interval.

Quantiication of AT force, stifness, and Young’s 
modulus

The mechanical and material properties of the triceps surae 

muscle–tendon unit were assessed with the aid of synchro-

nous ultrasonography and dynamometry. Each participant 

underwent a familiarization session with the measurement 

equipment a week prior to testing. Subjects performed three 

isometric ankle plantarlexion maximum voluntary contrac-

tions (MVCs) with each leg in a seated position on a custom-

made strain gauge-type dynamometer (1000 Hz; please also 

see Epro et al. 2017), with the ankle and knee joints secured 
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at 90° angles (thigh and foot perpendicular to the shank) 

and the ankle joint visually aligned with the dynamometer’s 

axis of rotation (Fig. 2). The resultant ankle plantarlexion 

moment was calculated by multiplying the force correspond-

ing to the voltage recorded by the load-cell, by the distance 

between the load-cell and the dynamometer’s axis of rotation 

(Fig. 2). To examine the possible inluence of ankle joint-

dynamometer axis misalignment on the moment measured, 

a pilot study was conducted using a motion capturing system 

(120 Hz, Qualisys, Gothenburg, Sweden) in combination 

with a force plate (1080 Hz, 400 × 600 mm, Bertec, Colum-

bus OH, USA) to quantify the maximal anterior displace-

ment of the ankle joint axis during maximal isometric plan-

tar lexion contractions. Calculated maximal anterior shift of 

the ankle joint axis during the contractions was on average 

3.4 ± 2.1 mm, leading to a mean overestimation in the calcu-

lated joint moment by 1.7% (for more details see Ackermans 

et al. 2016 Supplementary Material). Before the measure-

ment, all subjects completed a regimented warm up (2–3 

submaximal plantarlexion contractions and 2–3 MVCs) 

with each leg. The AT force was calculated by dividing 

the resultant ankle joint moment by the individual tendon 

moment arm, which was assessed using the tendon excur-

sion method during passive joint rotation (Maganaris et al. 

2004). The AT moment arm of the dominant leg was used to 

calculate the AT force for both legs, as previous studies have 

identiied no between-leg diferences in its value in younger 

adults (Bohm et al. 2015b). For each leg, three MVC tri-

als were performed. The highest calculated AT force out of 

three MVC trials (maximal AT force) was used to assess the 

ankle plantarlexor muscle strength for each individual leg.

Furthermore, for the dominant leg, three additional 

standardized MVC ramp contractions (3 s until maximum 

plantarlexion moment) were performed to obtain the AT 

force–length relationship. As the contraction duration was 

similar, yet the achieved joint moments difered between 

participants, the loading rate on the tendon was not con-

stant within the sample. However, we recently showed 

that this has no efect on the tendon elongations in the 

upper region of the force–elongation relationship of the 

AT (McCrum et al. 2018a), where the stifness measure-

ments are typically taken in vivo. This inding is also in 

line with the reports of Kubo et al. (2002) and Peltonen 

et al. (2013). The AT elongation was measured using a 

securely positioned linear array ultrasound probe (29 Hz; 

 MyLabTMFive, Esaote; Genoa, Italy) in the dominant limb 

during each ramp contraction as well as during the above 

mentioned passive joint rotations. The displacement of the 

myotendinous junction of the m. gastrocnemius medialis 

was manually digitized in relation to a skin marker using 

a video analysis software (Simi Motion 5.0, SIMI Reality 

Motion System GmbH, Unterschleißheim, Germany). To 

account for the efect of inevitable ankle joint angular rota-

tion on the measured elongation during each contraction, 

a potentiometer positioned beneath the heel was used to 

determine changes in the ankle joint angle as described 

previously (Ackermans et  al. 2016; Epro et  al. 2017). 

Fig. 1  Magnetic resonance images and 3D contour plot of the free 

Achilles tendon (AT). Sagittal images (a) were used to determine the 

AT proximal and distal ends (M. soleus-AT junction, and AT attach-

ment point on the calcaneum, respectively). Transversal images (b) 

between the AT proximal and distal ends were manually segmented 

to determine the AT cross-sectional area (CSA). Free AT length was 

determined as the curved path through the CSA centroids of each 

transversal slice (c)
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Subsequently, the AT stifness (mean value of the three 

MVC ramp contractions) was calculated as the slope of AT 

force and its resultant elongation relationship between 50 

and 100% of maximum tendon force using linear regres-

sion. The AT Young’s modulus was determined as the 

slope of the AT stress–strain relationship between 50 and 

100% of the maximal AT stress. The resting length of the 

tendon was measured as the path from the most proximal 

point of the tuber calcanei to the myotendinous junction 

of the m. gastrocnemius medialis (both determined using 

ultrasonography) using a lexible measuring tape along 

the skin surface in the same seated position at rest. The 

average CSA value of the free AT between 10 and 100% 

length (mean AT CSA) was used to calculate the AT stress.

Statistics

Normality of distribution and homogeneity of variance 

in the data were conirmed using the Shapiro–Wilk and 

Levene’s test (P > 0.05). A Pearson product-moment cor-

relation coeicient was used to examine the relationship 

of AT force with AT stifness, Young’s modulus, and mean 

AT CSA for the dominant leg only. To examine region-

speciic diferences in AT CSA, Pearson product-moment 

correlation coeicients were calculated for the relationship 

between maximal AT force and each 10% tendon length 

interval (n = 10; Int 10%–Int 100%). A one-way measures 

analysis of variance (ANOVA) was used to identify poten-

tial within-subject leg diferences in maximal AT force, 

mean AT CSA, and in free AT length between the domi-

nant and non-dominant legs. To consider region-speciic 

main efects on AT CSA, a further two-way ANOVA with 

repeated measures was used to identify possible within-

subject leg (dominant leg vs. non-dominant leg) and 

between tendon interval efects on AT CSA, with leg as 

dependent variable. Duncan’s post hoc comparison was 

performed when a signiicant main efect was detected. 

Furthermore, a symmetry index was determined (Robinson 

et al. 1987) between limbs as follows:

where XDominant is the parameter from the dominant limb 

and XNon-dominant the corresponding parameter from the 

non-dominant leg. Therefore, a positive symmetry index 

means that the selected parameter has a higher value in the 

dominant than non-dominant leg, and a negative symmetry 

index means that the value is higher in the non-dominant leg. 

Potential diferences between the symmetry indexes of maxi-

mal AT force and mean AT CSA as well as the individual 

AT CSA length intervals were analyzed using a one-way 

repeated measure ANOVA. Additional Pearson correlation 

coeicients were implemented to examine the relationship 

between symmetry index in maximal AT force and mean AT 

CSA, and between symmetry index in maximal AT force and 

in all AT CSA intervals. All statistical procedures were per-

formed using Statistica (Release 10.0, StatSoft Inc., Tulsa, 

OK, USA) and the level of signiicance was set at α = 0.05. 

All results in the text and igures are presented as mean and 

standard deviation (mean ± SD).

Symmetry Index =
XDominant − XNon-dominant

1

2

(

XDominant + XNon-dominant

)
× 100%,

Fig. 2  Ankle plantarlexion MVC moment was measured in a cus-

tom-made strain gauge-type dynamometer. Subjects were seated with 

their lower leg secured, with knee and ankle joints positioned at 90° 

(shank perpendicular to thigh). The foot was placed on the dynamom-

eter so that the axis of rotation of the ankle joint was aligned with the 

plate’s center of rotation. Therefore, the ankle plantarlexion MVC 

moment was equivalent to the moment measured by the dynamome-

ter, which is computed as the product of F (resultant force) and r (dis-

tance between the strain gauge and the dynamometer’s axis of rota-

tion). Achilles tendon force was calculated by dividing the resultant 

ankle joint moment by the tendon moment arm from the dominant leg
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Results

There were statistically signiicant correlations (P < 0.05; 

n = 30) between maximal AT force and AT mechanical 

and material properties in the dominant leg, with r = 0.500 

and r = 0.414 for AT stiffness and Young’s modulus, 

respectively (Fig. 3). No signiicant correlation was found 

between maximal AT force and mean AT CSA (r = 0.338; 

Fig.  3). However, Pearson’s correlation coefficients 

between maximal AT force and AT CSA at individual ten-

don intervals were signiicant (P < 0.05) in the thinnest/

proximal part of the tendon; Int 80%: r = 0.384; Int 90%: 

r = 0.463; Int 100%: r = 0.432 (Fig. 4).

The within-subject leg comparison revealed no signii-

cant diferences in maximal AT force between the domi-

nant (2798 ± 566 N) and non-dominant legs (2667 ± 512 N), 

as well as in the length of the free AT (dominant leg: 

37.0 ± 12.2  mm; non-dominant leg: 36.9 ± 11.7  mm). 

Regarding the AT CSA, there was a signiicant interval 

efect (P < 0.05), but no leg efect. Speciically, AT CSA 

increased from proximal toward the distal end (Fig. 5), 

while no signiicant diferences in mean AT CSA (domi-

nant leg: 71.2 ± 10.4  mm2; non-dominant leg: 71.4 ± 10.2 

 mm2) or analyzed AT CSA intervals were found between 

legs. The post hoc test showed that CSA at Int 100% was sig-

niicantly (P < 0.05) smaller than mean CSA at Int 10–70%; 

Int 90% < Int 10–60%; Int 80% < Int 10–60%; Int 70% < 

Int 10–50%; Int 60% and Int 50% < Int 10–40%; Int 40% 

< Int 10–20%; and Int 30% and Int 20% < Int 10%. These 

diferences were independent of leg (no signiicant interac-

tion) (Fig. 5). The analysis of inter-limb symmetry revealed 

Fig. 3  Correlations between the 

maximal calculated Achilles 

tendon (AT) force and AT stif-

ness, AT Young’s modulus, and 

mean AT cross-sectional area 

(CSA), respectively (n = 30; 

dominant leg). #Statistically 

signiicant correlation (P < 0.05)

Fig. 4  Correlations between Achilles tendon (AT) cross-sectional 

area (CSA) and maximal calculated AT force for the distal, mid-, and 

proximal portion of the AT (n = 30; dominant leg). #Statistically sig-

niicant correlation (P < 0.05)

Fig. 5  Mean and SD Achilles tendon (AT) cross-sectional area (CSA) 

of the examined older female adults in 10% intervals of tendon 

length for the dominant leg and non-dominant leg (n = 30). Tendon 

CSA is steadily increasing from the proximal to the distal end of the 

AT. 1, 2, ..., 7: statistically signiicant diference in CSA to Int 10%, Int 

20%,..., Int 70%. (P < 0.05)
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signiicantly higher (P < 0.05) symmetry index values for 

maximal AT force (7.2 ± 11.3%) in comparison to AT CSA 

(mean: − 0.3 ± 7.5%; individual length intervals: range − 3.4 

to 1.4%). No signiicant correlations were found between the 

symmetry indexes of maximal AT force and mean AT CSA, 

or between the symmetry indexes of maximal AT force and 

AT CSA at the length intervals studied.

Discussion

In the present study, we aimed to establish if there is an 

association between ankle plantarlexor muscle strength 

(maximal AT force) and AT mechanical, material and mor-

phological properties in a sample of older female adults. Our 

hypothesis, that maximal AT force would be associated with 

AT biomechanical properties, with maximal AT force hav-

ing a higher correlation with Young’s modulus than tendon 

CSA, was conirmed. The maximal AT force showed signii-

cant correlations with AT CSA only in the most proximal 

part of the tendon. Furthermore, we conirmed that the AT 

CSA is symmetrical between the dominant and non-domi-

nant legs across the entire length of the tendon.

Earlier studies with younger adults have demonstrated 

that along with improved muscle strength in response to 

mechanical loading, tendons also adapt by increasing their 

stifness via both alterations in material properties as well 

as in CSA (Arampatzis et al. 2007a; Kongsgaard et al. 2007; 

Seynnes et al. 2009; Bohm et al. 2014). The correlations 

in the current study demonstrate the importance of ankle 

plantarlexor muscle strength (maximal AT force) for AT 

stifness and Young’s modulus also in older adults, whereby 

mean tendon CSA seems to be less inluenced by the varia-

tion in muscle strength (r = 0.338; P = 0.064). Similar to our 

previous study using an unilateral analysis in older adults 

(Epro et al. 2017), as well as in younger adults (Arampatzis 

et al. 2007a, 2010; Bohm et al. 2014, 2015b), in the current 

study the free AT CSA showed greater CSA in the distal part 

of the tendon in both legs of older adults. The variation in 

AT CSA with length interval indicates a similar variation in 

tensile stresses along the tendon and as tendon adaptation is 

triggered by mechanical stimuli, regional adaptations should 

be considered. The region-speciic correlations between 

maximal AT force and AT CSA in the current study indicate 

that the proximal part of the free AT may be more likely to 

display morphological adaptations following an increase in 

muscle strength in older adults. This is consistent with the 

application of higher tensile stress at the proximal than the 

distal portion of the tendon due to the smaller tendon CSA.

Taking into account cross-sectional investigations with 

athletes and various exercise interventions, it has been pro-

posed (Wiesinger et al. 2015; Maganaris et al. 2017) that 

stifening of tendon through modiications in its material 

requires certain mechanical loading characteristics (e.g., 

loading magnitude, frequency and/or duration), which may 

not necessarily occur in daily living. This rapid adaptation 

may continue up to a point when critical density is sur-

passed to facilitate tendon growth (Wiesinger et al. 2015) 

and further improvements in tendon stifness would there-

fore be brought about by tendon hypertrophy (Maganaris 

et al. 2017). Due to aging-related disuse and inactivity, it 

may be speculated that the tendons of older people could 

be subjected to very high loads during some daily activi-

ties, for example during stair negotiation (Hortobágyi et al. 

2003; Reeves et al. 2008; Beijersbergen et al. 2013), as the 

in-series muscles would be required to operate closer to their 

maximum strength capacities to execute the task.

In the present study, no diferences in AT CSA along 

the tendon’s length were found in the dominant compared 

to non-dominant leg, which may be related to a symmetry 

between legs in maximal AT force and a corresponding simi-

larity in mechanical loading in daily life. This was further 

supported by the identiied comparatively low symmetry 

indexes in all investigated parameters (maximal AT force, 

mean AT CSA as well as the individual AT CSA length 

intervals; range: − 3.4 to 7.2%). Previous experimental stud-

ies clearly demonstrate that habitual tendon strain caused 

by the transmission of muscle forces is one of the strong-

est indicators of risk for tensile tendon injury (Wren et al. 

2003; LaCroix et al. 2013). Accordingly, it has been sug-

gested that increasing the strength-generating capacity of 

a muscle would be accompanied by a modulation of the 

mechanical properties of the tendon (Mersmann et al. 2017). 

Speciically, the tendon should become stifer when muscle 

strength is improving, so that the tendon remains safe and 

protected from a potential injury/fracture in tension caused 

by the increased force the muscle applies while pulling on 

the tendon. One possible explanation is that the tendon 

adapts to a change in habitual loading by increasing its stif-

ness through alterations in its material (Young’s modulus) 

rather than size (CSA). This could also explain the stronger 

associations between maximal AT force and AT mechani-

cal and material properties (r = 0.500 for AT stifness and 

r = 0.414 for Young’s modulus) in comparison to mean AT 

CSA (r = 0.338; P = 0.064) in the current study. The region-

speciic analysis for the AT CSA demonstrated signiicant 

relationships with maximal AT force only in the proximal 

part of the tendon (correlation coeicients from 0.384 to 

0.463). This is in line with most exercise intervention stud-

ies with older adults, where the magnitude of post-exercise 

adaptations in tendon stifness and Young’s modulus seem 

to be comparable to younger adults, whereas changes in ten-

don CSA appear to be rather limited (Reeves et al. 2003; 

Grosset et al. 2014; McCrum et al. 2018b). Our recent study 

(Epro et al. 2017), however, challenges previous results and 

documents that tendon hypertrophy can in fact take place in 
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response to exercise in older people. In contrast to previous 

studies, we recorded a large number of scans along the ten-

don to detect regional tendon size adaptations that could go 

undetected with a limited number of scans, the typical meas-

urement approach in previous studies. More importantly, the 

exercise-induced increase in muscle strength in the previous 

studies by Grosset et al. (2014) and Reeves et al. (2003) 

was smaller (9–14% muscle strength increase) than the mus-

cle strength increase by 22–25% in Epro et al. (2017). The 

rather small diferences in maximal AT force between legs 

in combination with the mere tendency toward correlation 

(r = 0.338, P = 0.064) between maximal AT force and aver-

age AT CSA raise the possibility that a larger improvement 

in muscle strength would be required for overall tendon size 

adaptations to occur. In the present study, the dominant leg 

was not always the stronger leg (in six subjects the dominant 

leg was the weaker leg), which means that the diference in 

muscle strength between dominant and non-dominant legs 

underestimates the muscle strength diference between the 

stronger and weaker legs. However, even if we account for 

this diferentiation by considering only the 24 subjects in 

which the dominant leg was also the stronger leg, there is 

still a lack of AT CSA asymmetry between legs, despite an 

inter-limb diference in maximal AT force of about 12%. 

However, it should be noted that when dividing all sub-

jects (n = 30) into a stronger and a weaker group based on 

a median split with average muscle strength data from both 

limbs, maximal AT force diferences between groups were 

on average 36% and mean AT CSA in the stronger group was 

signiicantly larger (P < 0.001, ~ 9%, see Fig. 6), providing 

support to the notion that much higher strength diferences 

than the present inter-limb diferences would be required to 

bring about inter-limb diferences in tendon size.

In our analysis of tendon size variation with muscle 

strength, we have implicitly assumed that the AT force 

calculated from plantarlexion moment relects the force 

generated by the triceps surae muscles during MVC. This, 

however, is not the case, as in addition to the contracting 

triceps surae muscles which are joined distally to form the 

AT, there are six additional ankle plantarlexors that are not 

attached onto the AT (plantaris, tibialis posterior, lexor hal-

lucis longus, lexor digitorum longus, peroneus brevis, and 

peroneus longus). Moreover, there is a “negative” moment 

contribution by the antagonist ankle dorsilexors, which also 

co-contract during a plantarlexion MVC. However, the tri-

ceps surae muscle size occupies ~ 77% of the overall plan-

tarlexor muscle group’s physiological CSA (Fukunaga et al. 

1996) and the antagonist ankle dorsilexors co-contract little 

at mid-range joint positions (Maganaris et al. 1998; Mademli 

et al. 2004; Arampatzis et al. 2005). Therefore, the contribu-

tion of these unaccounted factors is unlikely to explain the 

variation in ankle plantarlexion MVC moment (hence cal-

culated AT force) within the sample of older women tested. 

In addition, we cannot exclude possible inter-limb and inter-

individual diferences in muscle activation level (Mademli 

and Arampatzis 2008; Morse et al. 2004), which might have 

inluenced the estimation of tendon force as well as the leg-

symmetry calculations. Furthermore, due to the knee joint 

being lexed at 90° during the measurement of maximal 

plantar lexion moments, it is possible that the gastrocne-

mius muscle was in a less favorable position to generate 

force in comparison to the soleus muscle. However, in our 

previous study (Epro et al. 2017) the same subjects showed 

relatively homogenous exercise-related increment in mus-

cle thickness in soleus and gastrocnemius muscle over 14 

weeks and 1.5 years by exercising exactly in the same joint 

coniguration. In addition, we quantiied the AT moment arm 

length in the dominant leg only, and we used this value to 

calculate the AT force in both legs with the reasoning that 

no between-leg diferences have been identiied in younger 

adults (Bohm et al. 2015b).

Conclusions

In summary, these indings demonstrate that maximal force-

generation capabilities play a more important role in the 

variation of AT stifness and AT Young’s modulus than in 

tendon CSA, suggesting that exercise-induced increases 

in muscle strength in older adults may lead to changes in 

tendon stifness primarily due to alterations in the tendon’s 

material rather than in its size. Furthermore, it seems that 

inter-limb asymmetries in triceps surae muscle strength 

Fig. 6  Mean Achilles tendon cross-sectional area (CSA) of the 

examined older female adults in 10% intervals of the tendon length 

for  GroupStrongLegStrong (n = 14),  GroupStrongLegWeak (n = 14), 

 GroupWeakLegStrong (n = 16), and  GroupWeakLegWeak (n = 16). #Sta-

tistically signiicant diferences between the strong and weak groups 

(P < 0.05). 1, 2, ..., 7: statistically signiicant diference in CSA to Int 

10%, Int 20%,..., Int 70%. (P < 0.05) for each leg



2277European Journal of Applied Physiology (2018) 118:2269–2279 

1 3

are not large enough to be accompanied by morphological 

changes along the whole free AT in older adults.
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