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An EMG-Assisted Muscle-Force Driven Finite
Element Analysis Pipeline to Investigate Joint-

and Tissue-Level Mechanical Responses in
Functional Activities: Towards a Rapid

Assessment Toolbox
Amir Esrafilian , Lauri Stenroth , Mika E. Mononen, Paavo Vartiainen , Petri Tanska ,

Pasi A. Karjalainen , Juha-Sampo Suomalainen, Jari P. A. Arokoski, David J. Saxby , David G. Lloyd ,
and Rami K. Korhonen

Abstract—Joint tissue mechanics (e.g., stress and
strain) are believed to have a major involvement in the
onset and progression of musculoskeletal disorders, e.g.,
knee osteoarthritis (KOA). Accordingly, considerable ef-
forts have been made to develop musculoskeletal finite
element (MS-FE) models to estimate highly detailed tissue
mechanics that predict cartilage degeneration. However,
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creating such models is time-consuming and requires ad-
vanced expertise. This limits these complex, yet promising,
MS-FE models to research applications with few partici-
pants and makes the models impractical for clinical as-
sessments. Also, these previously developed MS-FE mod-
els have not been used to assess activities other than
gait. This study introduces and verifies a semi-automated
rapid state-of-the-art MS-FE modeling and simulation tool-
box incorporating an electromyography- (EMG) assisted MS
model and a muscle-force driven FE model of the knee with
fibril-reinforced poro(visco)elastic cartilages and menisci.
To showcase the usability of the pipeline, we estimated
joint- and tissue-level knee mechanics in 15 KOA individ-
uals performing different daily activities. The pipeline was
verified by comparing the estimated muscle activations and
joint mechanics to existing experimental data. To deter-
mine the importance of the EMG-assisted MS analysis ap-
proach, results were compared to those from the same FE
models but driven by static-optimization-based MS models.
The EMG-assisted MS-FE pipeline bore a closer resem-
blance to experiments compared to the static-optimization-
based MS-FE pipeline. Importantly, the developed pipeline
showed great potential as a rapid MS-FE analysis toolbox
to investigate multiscale knee mechanics during different
activities of individuals with KOA.

Index Terms—Knee osteoarthritis, daily activities, elec-
tromyography, musculoskeletal modeling, finite element
analysis, rapid multiscale modeling.

I. INTRODUCTION

KNEE osteoarthritis (KOA) is a degenerative joint disease
causing pain and functional disability [1] with high health-

related costs [2]. There is compelling evidence that altered knee
joint motion and loading, and subsequent mechanical responses
(i.e., stress and strain) within the knee load-bearing tissues, are
key factors in the onset and progression of KOA [3]–[5]. Hence,
thorough knowledge of the tissue mechanical responses to knee
joint loading is essential to assess KOA and possibly restore knee
function. In this regard, knee joint contact forces (JCF), contact
area, and contact pressure have been experimentally measured
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in several activities [6], [7]. These experiments have revealed
fundamental information on the knee joint mechanics, but are
limited to specific subjects (e.g., those with instrumented im-
plants) or require highly invasive procedures. More importantly,
experimental approaches cannot measure crucial parameters
governing tissue adaptation and degeneration, such as stress,
strain, or fluid flow of the tissue.

Alternatively, musculoskeletal (MS) and finite element (FE)
models have become a tool of choice to investigate detailed joint
loading and tissue-level mechanical responses. Considerable
efforts have been made to develop MS and FE models capable
of incorporating subject’s muscle activation patterns [8], [9],
concurrent 12 degrees of freedom (DoFs) knee joint [10]–[13],
and complex soft tissue material models [12], [14], [15]. How-
ever, none of the developed multiscale MS-FE models have been
used to assess tissue-level joint mechanics in functional activities
other than gait. To the best of our knowledge, there are no
studies incorporating subject-specific muscle recruitment (ac-
tivation) strategies in the estimation of tissue-level mechanical
responses in different activities, although muscle recruitment
has a significant effect on the joint loading, especially in the
presence of MS disorders [16]–[22]. Those studies that have
reported detailed joint mechanical responses (i.e., tissue-level
mechanics) investigated healthy subjects [14], [22], [23], used
simplified joint models in terms of limited DoFs [23]–[25],
excluded subject-specific joint geometries [22], [24], omitted
crucial joint tissues (e.g., menisci) [22], [24], and/or used simple
soft tissue material models [22], [26]. Patient-specific joint
geometries [27], the inclusion of menisci [28]–[30] and a multi
DoFs joint model [13], and the use of an appropriate soft-tissue
material model can substantially alter the estimated tissue me-
chanics [31]–[33].

A fibril-reinforced composite material model is essential to
simultaneously estimate mechanical responses of both the fib-
rillar (collagen) and nonfibrillar (proteoglycans) matrices (e.g.,
in cartilage and meniscus) [31], [34], [35]. Poroviscoelasticity
is needed to replicate fluid-flow-dependent and -independent
mechanisms of biphasic tissues [36], as within-tissue fluid pres-
surization carries up to 85% of dynamic load [33], [37]. These
characteristics of the knee soft tissue emphasize the need for
a fibril-reinforced poroviscoelastic (FRPVE) material model,
which can potentially provide FE analysis with more detailed
estimates of tissue-level mechanical responses, especially if
adaptation and degradation of cartilage and its fibrillar and
nonfibrillar matrices are of interest [4], [34], [35].

Summarizing, FE models utilizing subject-specific joint ge-
ometries and complex FRPVE material models have shown great
potential for estimating highly-detailed tissue mechanics and
predicting cartilage damage and degeneration [4], [32], [34],
[35], [38]. Nevertheless, incorporating complex material mod-
els (e.g., FRPVE) requires a well-structured mesh to correctly
implement tissue constituents (e.g., the collagen fibril orienta-
tion and density, fluid fraction, etc.) and successfully converge
the FE analysis. Due to these technical requirements, the use
of automated segmentation and meshing algorithms are very
limited in application to FRPVE models [39]. Even the currently
available multiscale knee models with simpler (elastic) material
properties, such as those developed by Lenhart et al. [11], Marra

et al. [13], Navacchia et al. [40], and Eskinazi and Fregly [10],
require joint geometries as input but do not estimate tissue-level
mechanics. Thus, creating the above-mentioned multiscale mod-
els, especially those with a complex FRPVE material model, is a
cumbersome manual task requiring several weeks of high-level
expertise [41]. This process entails image segmentation, mesh-
ing, material model incorporation, model assembly, estimation
and application of loading and boundary conditions, and achiev-
ing a converged solution. This lengthy procedure limits these
complex, yet promising models to research purposes with only
a few participants, and therefore their application is impractical
and infeasible for large cohorts or clinical assessments.

Mononen et al. [39] have developed an atlas-based FE mod-
eling method to break through the modelling barrier and rapidly
generate FE models of the knee with complex (i.e., FRPVE)
material models. They showed their atlas-based FE modeling
approach resulted in similar cartilage mechanics compared to
the manually segmented FE models [39]. They also reported
that using one template (rather than choosing between several
templates) to create FE models of subjects showed the most
promising results in predicting the KOA progression and classi-
fying subjects into correct KOA grade groups [39]. Nevertheless,
their atlas-based FE modeling method excludes patellar cartilage
and knee joint ligaments as well as subject-specific knee joint
loading [39].

In this study, we developed a rapid state-of-the-art MS-FE
modeling and simulation pipeline potentially feasible for re-
search and clinical applications to investigate joint- and tissue-
level knee mechanics in different functional activities. To this
end, we adapted the atlas-based FE modeling toolbox [39] and
coupled it with an EMG-assisted muscle-force driven FRPVE
FE analysis workflow [14]. To showcase the utility of the
pipeline, we estimated joint- and tissue-level knee mechanics
in a sample of individuals with early KOA while performing
different daily activities. The pipeline was verified by comparing
the estimated muscle activations, JCFs, and tissue mechanical
responses to the literature. To explore the influence of EMG-
assisted MS analyses, the estimated joint- and tissue-level results
were compared with those estimated using similar FE models
but driven by static-optimization (SO) based MS models.

II. METHOD

A. Data Collection and Pre-Processing

Fifteen subjects (6 males and 9 females, 62.4± 7.8 years
old, and with body mass index 29.3± 6.8) meeting the study
admission criteria participated in this study (workflow in Fig. 1).
Subjects’ characteristics are provided in the supplementary ma-
terial, Table S1. The inclusion criterion was previously diag-
nosed KOA according to the KOA clinical definition (i.e., the
existence of both pain and an evident radiographic joint tissue
deterioration [42]) in either of the medial or lateral femur, tibia,
or patella. The exclusion criteria were the existence of any record
of lower limb surgeries or diagnosed disorders such as ligament
or tendon rupture or the presence of pain in any body parts except
for the knee. Analyses were undertaken on each subject’s leg
with the greatest KOA severity, comprising of a total of 15 knees,
one knee from each subject. All the procedures were approved
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Fig. 1. The illustration of the developed MS-FE analysis pipeline. Inputs to the pipeline are shown with blue arrows. The finite element model
components (shown in the green box) consisted of femoral cartilage (in green), tibial cartilage (in red), patellar cartilage (in blue), menisci (in grey),
knee ligaments (in yellow and black), and patella tendon (in yellow). Note that bones were considered rigid and excluded from finite element models.

by the Human Research Ethics committee of the Northern Savo
Hospital District (permission number 750/2018), and written
informed consent was obtained from each subject.

We analyzed seven different daily activities. These consisted
of: 1) chair stand-to-sit, 2) chair sit-to-stand, 3) walking at a
naturally selected speed (1.34 ± 0.14 m/s), 4) walking at a
standardized speed (1.20 ± 0.05 m/s), 5) picking up a pen from
the ground, 6) stair ascent, and 7) stair descent. The motion data
collection (Fig. 1) consisted of synchronous measurement of
3D marker trajectories (100 Hz, Vicon, U.K.), ground reaction
forces (GRF) (two force plates, 1000 Hz, OR6-7MA, AMTI,
USA), and EMGs (1000 Hz, ME6000, Bittium Biosignals Ltd,
Finland). EMGs from 8 muscles of the test leg, comprising
the vastus medialis and lateralis, rectus femoris, medial and
lateral gastrocnemius, biceps femoris, semitendinosus and glu-
teus medius, were recorded according to the SENIAM guide-
lines [43]. Additionally, magnetic resonance images (MRIs)
were taken from subject’s test knee using a 0.18 T scanner
(3D CE sequence, 0.89 mm slice thickness and 0.625 in-plane
resolution, Esaote E-Scan XQ, Italy).

Marker trajectories and GRFs were filtered using a fourth-
order zero-lag Butterworth low-pass filter with cut-off frequen-
cies of 6 Hz and 30 Hz, respectively. Employing MOtoNMS [44],

EMG envelopes (Figs. S1 to S7) were generated from the
recorded EMG signals by band-pass filtering(30-300 Hz), full-
wave rectifying, low-pass filtering (6 Hz), and then normaliz-
ing to the peak similarly-processed EMG data recorded from
maximum isometric voluntary exertion trials or daily activities
trials that were undertaken by each subject [45]. The maximum
isometric voluntary exertion trials were conducted for hip ab-
duction, hip flexion, knee flexion/extension, and ankle plantar
flexion.

B. The MS Analyses Pipeline

1) The MS Model and Inputs to the MS Analyses: The
MS analyses consisted of the SO and EMG-assisted neural
solutions using an MS model optimized for modeling activities
with deep knee and hip flexions [46]. The MS model had a knee
joint with 1 primary DoF (i.e., knee flexion angle) and separate
adduction and abduction axes (perpendicular to the flexion-
extension axis), passing through the medial and lateral femoral
epicondyles [47]. These separate adduction and abduction axes
enabled medial, lateral, and total JCFs to be calculated [27],
[47]–[50]. Since marker-based motion analysis is shown to be
inaccurate for estimating knee joint secondary kinematics during
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dynamics activities [51], the knee joint’s secondary DoFs within
the MS model were either locked (i.e., tibiofemoral relative
translations and abduction/adduction and internal/external ro-
tation DoFs) or were defined as a function of knee flexion angle
(i.e., patellar DoFs) during the MS analyses [46]. Importantly,
1 DoF knee model is shown sufficient to estimate muscle forces
and joint kinetics, while secondary kinematics were estimated
by the 12 DoFs knee FE model [8], [13], [14].

Through OpenSim (v 4.1) [52], body segments and length-
dependent muscle properties of the MS model were first scaled
for each subject using the body mass and a static trial of double
support standing of the subject. During the scaling process of
the MS models (using OpenSim scaling tool), the tibiofemoral
abduction/adduction DoF was opened to allow the adduc-
tion/adduction angle to be adjusted subject-specifically [53].
This was done to mitigate the limitation with the 1 DoF knee
joint of the MS model [53], i.e., accounting for the greater inter-
individual differences in knee abduction/adduction alignment in
KOA patients compared to healthy adults [54], which can poten-
tially affect the activation level of knee crossing muscles [47],
[55]. Of note, the knee abduction/adduction alignment from
marker-based motion capture data (as used in this current study)
is reported to be correlated with those from radiographs of the
entire lower extremity in double support standing [56].

After scaling, for subsequent MS analyses such as inverse
kinematics, etc. the knee adduction/adduction DoF was locked
to the abduction/adduction angle estimated from scaling [53].
However, the measured muscle activation patterns, which act
to stabilize the knee abduction/adduction moment [14], [57],
were used within our EMG-assisted MS analyses and implicitly
affected the FE analysis. This attenuates the limitation in using a
1 DoF knee joint MS model by incorporating the direct action of
the muscle activation patterns (i.e., EMGs) and forces in stabi-
lizing abduction/adduction moment, especially during dynamic
tasks other than walking [14], [57]. Such EMG-assisted MS 1
DoF knee models well estimate measured medial, lateral, and
total knee JCF [27], [48]–[50], [58]. Finally, maximum isometric
muscle forces were scaled by the ratio of the subject’s mass to
the mass of the un-scaled model.

Within OpenSim, the scaled models (i.e., 15 MS mod-
els in total) were used to calculate joint kinematics (in-
verse kinematics), knee external moments (inverse dynamics),
JCFs (for both tibiofemoral and patellofemoral joint using
the joint reaction analyses tool), and muscle moment arms
and muscle-tendon lengths (using the muscle analysis tool).
The muscle moment arms were extracted for flexion/extension,
abduction/adduction, and internal/external DoFs of both the
tibiofemoral and patellofemoral joints. The variables were fed
into the SO-based or EMG-assisted MS analyses, and then into
the FE models of the study, correspondingly (Fig. 1 and Sections
II.B.2 and II.C.2).

2) The Static-Optimization and EMG-Assisted MS Anal-
yses: Both the SO-based and EMG-assisted MS analyses were
used to drive the FE models to investigate possible alterations
in the joint-level and tissue-level mechanics from the different
neural solutions. The OpenSim SO toolbox was used for the
SO-based estimation of muscle activation patterns and forces.
In this, muscle forces were estimated to track the joint moments

while minimizing the sum of squared muscle activations. Muscle
contraction dynamics was included, but the muscle activation
dynamics was not considered within the SO analyses of Open-
Sim [52].

The EMG-assisted estimation of muscle activation patterns
and forces was performed using the Calibrated EMG-Informed
Neuromusculoskeletal Modelling Toolbox (CEINMS) [9], [14].
Inputs to CEINMS consisted of 1) muscle properties, 2) en-
veloped EMGs, 3) joint external moments of the leg of interest,
and 4) muscles’ moment arms and muscle-tendon lengths. Mus-
cle properties of all the 40 muscles of the leg of interest were
imported to CEINMS, including maximum isometric force,
tendon slack length, optimal fiber length, and pennation angle
of the muscles, which were obtained from the scaled MS models
of the study, separately for each subject.

Within CEINMS, multi-DoFs calibration [9], [14], [59] was
first performed to optimize the neuromuscular parameters of
all the 40 muscles of the leg of interest, separately for each
subject. Five DoFs were included: 3 hip DoFs, 1 knee DoF, and
1 ankle DoF. The neuromuscular parameters were: maximum
isometric force, tendon slack-length, optimal fiber-length, and
EMG-to-activation recursive filter-coefficients and nonlinear
shape-factor [45]. One trial of each daily task was included
in the calibration. Following calibration, the hybrid mode of
the CEINMS toolbox, with muscle activation and contraction
dynamics including elastic tendons, was employed to perform
the EMG-assisted MS analyses (Fig. 1). In this, a simulated
annealing algorithm was used to minimize the following cost
function:

fcost = α
∑

E2
M + β

∑
a2exc + γ

∑
E2

EMG,exc (1)

where EM is the error between joint moment estimated by the
inverse dynamics and the joint moment generated by the esti-
mated muscle forces at each DoF,aexc is the estimated excitation
of each of the 40 muscles, and EEMG,exc is the error between
the EMG envelopes and the corresponding estimated muscle
excitations. The weight factors α and β were set to one, while
the γ was obtained (relative to α and β) through optimization to
ensure equally minimized joint moment and muscle excitation
errors [59].

The muscle forces from both neural solution approaches
were fed into the OpenSim’s joint reaction analysis toolbox to
calculate the JCFs for all the activities. Subsequently, results
from both SO-based and EMG-assisted MS analyses were used
to drive the FE model (Fig. 1 and Section II.C.2).

C. FE Analyses Pipeline

1) The Atlas-Based FE Modeling Toolbox: To develop a
workflow for the rapid generation and simulation of the MS-
FE model, we used a novel atlas-based FRPVE FE modeling
approach [39] along with a muscle-force driven FE analysis
workflow [14]. The atlas-based FRPVE FE modeling approach
used an FE model geometry of the knee joint as the tem-
plate, and then anisotropically scales the template FE model
according to the subject’s morphological dimensions (explained
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later in this section). Here this approach was updated to in-
clude also patellofemoral joint. Only one template was used
since it was shown earlier to perform equally or even bet-
ter than the multi-template approach in predicting the KOA
progression and classifying subjects into correct KOA grade
groups [39].

Herein, we used the geometries of the FE model from our
previous studies [8], [14], [25] as the template FE model. The
template consisted of femoral, patellar, and tibial cartilage,
menisci, and knee ligaments [8], [14], [25]. Bones were assumed
rigid (compared to cartilages), and hence, were excluded from
FE models [8], [14], [25]. Knee cartilages, menisci, and ligament
insertion points were manually segmented (MIMICS, version
21, Materialise, Belgium) and the 3D geometries were meshed
precisely in HyperMesh (version 2019, Altair, US). All the
meshed geometries were then imported into the Abaqus software
(version 6.20, Dassault Systèmes, US) to create a complete FE
model of the template subject. All the parts were assembled, and
ligament bundles and menisci horn attachments were defined
according to the insertion points obtained from the template
MRIs. The reference points (Fig. 1), node and element sets
required for applying boundary conditions and loads, contacts,
and material models (e.g., collagen fibrils, void ratio, etc.), as
well as those sets for reading the results, were defined. Next,
material models were assigned, and contacts and couplings were
defined.

Femoral, tibial, and patellar cartilages were modeled using an
FRPVE material model [14], [25], [60], [61] and menisci were
modeled as a fibril-reinforced poroelastic (FRPE) material [25],
[62]. These material models have been rigorously developed,
validated against experiments, and applied to the knee joint mod-
els [14], [15], [25], [60]–[65]. Knee ligaments, including anterior
and posterior cruciate ligaments (ACL and PCL), medial and
lateral collateral ligaments (LCL and MCL), lateral and medial
patellofemoral ligament (LPFL and MPFL), patellar tendon, and
menisci horn attachments, were modeled as nonlinear spring
bundles [66]–[69]. More details on the material models and
parameters are provided in the supplementary material (Section
1.3.1 and Table S2). Finally, the whole FE template model was
exported as an Abaqus input file (.inp extension). The generated
template was then anisotropically scaled (using MATLAB) in a
patient-specific manner according to the ratio of morphological
dimensions of each subject to the corresponding dimensions
obtained from the template [39] (Figs. S8 and S9), measured as
follows.

The sagittal plane image slices (Figs. 1, S8, and S9) with the
maximum anteroposterior length of medial and lateral femoral
condyles were first and separately selected. Then anteroposterior
dimensions of the femoral and tibial cartilages and menisci
(i.e., the outer edges of medial and lateral meniscus) were
separately measured for medial and lateral sides. In the frontal
plane (Figs. 1, S8, and S9) the image slice with the maximum
width of femoral condyles was first selected. From this selected
slice, widths and thicknesses of femoral and tibial cartilages
and menisci, as well as the outer edge distances of the medial
and lateral menisci, were measured. Patellar cartilage widths,
thicknesses, and heights were correspondingly measured from
the image slice with the largest patella width in the transverse

plane, or the slice from the femoral groove in the sagittal plane
(Figs. 1, S8, and S9).

The thickness of the medial and lateral femoral and tibial
cartilages and menisci and the patellar cartilage were scaled
separately according to the corresponding measurements. The
mediolateral length of the femur, tibia, patella, and menisci was
scaled using the average value of the associated measurements.
Likewise, the average value of the anteroposterior measurements
from femur, tibia, and menisci was used to scale these parts in the
sagittal plane. These average scaling factors, rather than separate
scaling factors for each tissue, were used to avoid unrealistic
alterations in the contact surfaces (i.e., mismatched contact sur-
faces) and hence unrealistic stress concentration within different
tissues, as we examined in our previous study [39]. Ligament
insertion points in the femur, tibia, and patella were scaled
according to the corresponding morphometry of the femur, tibia,
and patella.

Using MATLAB and the above-mentioned measurements, the
nodal coordinates of each part within the Abaqus input file (i.e.,
the template model) were scaled to create the subject’s FE model.
Except for the loading and boundary conditions (i.e., kinematic
and kinetic inputs of the subject’s FE model), the rest of the
Abaqus input file (e.g., element definitions, node and element
sets, etc.) was identical for all the subjects (Figs. 1 and S8). This
process enabled the rapid and user-friendly FE model generation
and extraction of results.

2) Loading and Boundary Conditions, and Finite El-
ement Analyses: The MS models outputs that were used
as the FE models inputs consisted of [14]: 1) knee flexion
angle, 2) abduction/adduction and internal/external moments
around the tibiofemoral joint (inverse dynamics), 3) abduc-
tion/adduction and internal/external moments generated by the
muscles around the tibiofemoral joint, 4) flexion/extension,
abduction/adduction, and internal/external moments generated
by the quadriceps muscles around the patellofemoral joint, 5)
tibiofemoral JCFs, and 6) patellofemoral JCFs (Fig. 1). The
FE models inputs were correspondingly applied to the femoral
and patellar reference points (Fig. 1). The FE model’s reference
points were the origins of the coordinate systems in the asso-
ciated MS model. The MS and FE models coordinate systems
were similarly defined using the same bony landmarks to ensure
the consistency of the kinematics and kinetics between the MS
and FE models.

The bottom of the tibia was fixed in all the FE models. All
the nodes located on the femoral cartilage to the subchondral
bone interface were coupled to the femoral reference point.
Similarly, all the nodes located on the patellar-cartilage and
subchondral-bone interface were coupled to the patellar refer-
ence point (Fig. 1). The knee flexion angle, knee joint moments
(i.e., moments calculated from inverse dynamics in addition to
the moments generated by the muscles in abduction/adduction
and internal/external DoFs), and tibiofemoral JCFs were applied
to the femoral reference point (Fig. 1). Likewise, the moment
generated by the quadriceps muscles (i.e., flexion/extension,
abduction/adduction, and internal/external moments) and the
patellofemoral JCFs (including the muscle forces) were applied
to the patellar reference point (Fig. 1). The moments generated
by each muscle (i.e., around the joints’ center of rotation) were
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calculated by multiplying the muscle force by its moment arms
(explained in Section II.B.1) separately for flexion-extension,
abduction/adduction, and internal/external DoFs and for each
time point of the trial.

The femur had 5 active DoFs, and the patella had 6 active
DoFs in the FE models. Except for the knee flexion angle, which
was used as input to the FE models, the femur movements were
controlled by the knee ligaments, i.e., ACL, PCL, LCL, MCL,
and also partly affected by the patella through MPFL and LPFL
illustrated in Fig. 1. The patella movements were controlled
by the patella tendon (i.e., connecting the patella to the tibia),
LPFL, and MPFL (i.e., connecting the patella to the femur).
More explanations about the loading and boundary conditions
and inputs to the FE models are provided in the supplementary
material (Sections 1.3.3, 1.5, and Figs. S10 to S16) for both
EMG-assisted and SO-based pipelines.

The inputs to the FE models were automatically written
to a file (one file per trial) and attached to the appropriate
Abaqus input file (Section II.C.1) at the run time. Detailed
steps are explained in supplementary materials, Section 1.4.
Finally, the whole cycle of each trial/task was analyzed us-
ing Abaqus/Standard soils consolidation solver on an Intel(R)
Xeon(R) CPU E5-2690 v3 (2.60 GHz), single-thread analysis.

D. Post-Processing of the Results and Statistical
Analyses

The contact area, center of pressure (CoP) (see supplementary
material Eq.11), and average and maximum tissue mechanical
responses, including maximum principal stress, collagen fibril
strain, fluid pressure, and maximum shear strain were investi-
gated within the knee cartilages and menisci. To calculate the
average of tissue mechanical responses, for instance within the
tibial surface, first, all the nodes/elements of the tibial cartilage
in contact with either femoral cartilage or menisci were selected
separately at each time point of the cycles. Then the sum of
nodal/elemental values of the parameter of interest was calcu-
lated and divided by the number of nodes/elements in the contact
area for that time increment.

The estimated results from both SO-based MS-FE and EMG-
assisted MS-FE models were compared point-by-point (as a
function of time) using statistical parametric mapping (SPM)
paired t-tests [70], with p<0.05 and Bonferroni correction. Also,
root mean square error (RMSE) and coefficient of determination
(R2) between experimental and predicted muscle excitations
were calculated for each MS modeling approach and separately
for each subject’s trial (including all the time points).

III. RESULTS

Using the developed pipeline in MATLAB, loading the MRIs
and then measuring the morphological dimensions of each sub-
ject took only several minutes, from which the FRPVE FE model
of each subject was created in several seconds. Executing the
MS-FE analysis and delivering the results, on average, took
∼ 20 hours per one second of an activity (on a typical CPU
and single-thread analysis).

A. Muscle Activations, Joint Kinematics, and Joint
Kinetics

The estimated EMG-assisted muscle activations had fewer
deviations from EMG envelopes compared to SO-based
estimated muscle activations (Figs. S1 to S7). When comparing
measured EMGs vs. predicted muscle activations, in ∼ 55%
of all the activities R2 (Fig. 2) and RMSE (Fig. S17) were
significantly (p<0.05) different between the EMG-assisted and
SO-based neural solutions. In ∼ 84% of these cases (equivalent
to ∼ 47% of all the activities), the EMG-assisted MS model had
significantly (p<0.05) higher R2 compared to the SO-based MS
model (Fig. 2) and in ∼ 9% of all the activities, the SO-based
MS model had significantly (p<0.05) higher R2 than those of
the EGM-assisted MS model (Fig. 2).

The knee flexion angle, and abduction/adduction and in-
ternal/external rotation moments from the EMG-assisted and
SO-based MS models were not significantly different (p>0.05)
(Figs. S10 to S16). Nonetheless, the tibiofemoral JCFs, includ-
ing their peaks, in gait and stair negotiation estimated by the
EMG-assisted MS model were significantly (p<0.05) higher
than those of SO-based MS models for more than 70% of the
cycles (Figs. S10 to S16). Further, the normalized JCF peaks of
daily activities estimated by the EMG-assisted MS-FE pipeline
bore a closer resemblance to the in vivo measured JCFs [7]
compared to those of the SO-based MS-FE pipeline and those
estimated by a SO-based 12 DoFs knee MS model reported
previously [22] (Fig. 3). The EMG-assisted MS model estimated
higher JCFs on the medial tibia than the lateral tibia (Fig. S18-A
and B) during all the activities, although the SO-based neural
solution estimated higher JCF on the lateral tibia than medial
tibia during stand-to-sit, sit-to-stand, and pick up (Fig. S18-C
and D).

B. Contact Pressure, Contact Area, and Tissue
Mechanical Responses

In general, more subject-specific variations were observed in
the CoP at the maximum JCF among the subjects during the gait
and pick up, compared to other daily activities (Fig. 4). Nonethe-
less, the mediolateral and anteroposterior location of the CoP (on
the tibial cartilage) at the maximum JCF was comparable with
those from previous in situ experiments and simulation-based
studies, reported for the gait and stair negotiation [6], [12], [14].
For instance, Gilbert et al. [6] have measured the in situ contact
pressure at the maximum JCF during walking and stair ascent
within the center and the posterior regions of the tibial cartilage,
respectively; an outcome observed in our results (Fig. 4).

The medial and lateral tibial contact area during walking was
significantly (p<0.05) different only for ∼ 30% of the cycle
between the EMG-assisted and the SO-based MS-FE models
(Fig. 5, C and D). In stair ascent, the contact area estimated
by the EMG-assisted MS-FE model was significantly different
(p<0.05) than that of the SO-based MS-FE model for ∼ 20%
and ∼ 80% on the medial and lateral tibia, respectively (Fig. 5,
G and H). Nonetheless, there were fewer discrepancies between
the contact area estimated by the EMG-assisted MS-FE model
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Fig. 2. The coefficient of determination (R2) between the enveloped EMGs and estimated muscle activations by the EMG-assisted MS model (in
red) and SO-based MS model (in yellow), including all the time-points within the trials. Stars indicated significant differences (p<0.05) using paired
sample t-test, and error bars show 95% confidence intervals.

Fig. 3. The peak JCF estimated by the SO-based and EMG-assisted
MS models of the study compared to in vivo JCF [7] and those from
the 12 DoFs knee MS model [22]. Note that the JCFs are normalized
against the average stair descent JCF of each dataset, correspondingly.
Markers show the average values and shaded areas show the range
(i.e., maximum and minimum) of the result.

and those from in situ experiments [6] during walking and stair
ascent, compared to the SO-based MS-FE model (Fig. 5, C, D,
G, and H).

The magnitudes and mediolateral distributions of the esti-
mated mechanical responses of tibial cartilage during the gait
were comparable with those reported in previous studies [8],
[12], [14], [23], [71] (Figs. 6, 7, S19, and S20). Within the lateral
tibial cartilage, the average tissue mechanical responses were
highest in stand-to-sit, sit-to-stand, and pick up and were lowest
during walking in both the EMG-assisted and SO-based neural
solutions (Figs. 6, 7, S19, and S20, B and D). However, the max-
imum of the tissue mechanical responses was not substantially

different between the activities within the medial tibial cartilage
(Figs. 6, 7, S19, and S20, A and C).

IV. DISCUSSION

A. Summary

In this study, a novel MS-FE modeling pipeline was estab-
lished with a focus on feasibility for a rapid and user-friendly
clinical assessment tool. Herein, a state-of-the-art EMG-assisted
muscle-force driven FE model with FRP(V)E cartilages and
menisci [8], [14], [39] was utilized. The EMG-assisted MS
model enables the inclusion of subject-specific muscle activation
patterns, which are known to be altered in subjects with MS
disorders [16]–[22]. In addition, the highly-detailed FRPVE soft
tissue material model utilized in the FE models of this study
has been promisingly used to predict mechanically-induced
collagen network damage and proteoglycan loss within the knee
cartilages [4], [31]–[35], [38]. This prediction becomes possible
by analyzing, e.g., local areas with excessive levels of collagen
fibril or nonfibrillar matrix strain. To assess and verify the
developed pipeline, we investigated the knee joint loading and
tissue mechanical responses during different daily activities of
individuals with KOA.

B. The Atlas-Based MS-FE Modeling Toolbox

For the first time, we introduced a semi-automated and rapid
MS-FE analysis toolbox capable of modeling the whole knee
joint, incorporating subject-specific muscle activation patterns,
joint kinematics and kinetics, and multiscale tissue mechanics.
The presented pipeline took less than a day to create the models,
perform analyses of a general task, and then deliver the results.
Except for scaling the MS and FE models, the rest of the pipeline,
including running MS analyses in both OpenSim and CEINMS,
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Fig. 4. The tibial center of pressure (CoP) at the maximum JCF for 15 subjects of the study during the daily activities estimated by the EMG-
assisted (on the left) and SO-based (on the right) MS-FE pipelines. Markers are representative of each subject of the study.

Fig. 5. Contact area estimated by the EMG-assisted and SO-based
MS-FE models of the study compared to experiments [6] for medial
tibial cartilage during the gait (A) and stair ascent (E) and for lateral tibial
cartilage during the gait (B) and stair ascent (F). For ease of comparison,
simulation results are compared against each other (i.e., SO-based vs.
EMG-assisted) using paired sample t-test and also against the experi-
ments using independent samples t-test for medial tibial cartilage during
the gait (C) and stair descent (G) and for lateral tibial cartilage during the
gait (D) and stair ascent (H) using statistical parametric mapping (SPM).

writing inputs to the FE models, executing the FE models, and
then extracting the results, does not require user interactions.
Of course, possible convergence difficulties in the FE model
and interpretation and verification of the results of each step
still require supervision and expertise, although this could be
automated in future.

Fig. 6. Average of the maximum principal stress estimated by the
EMG-assisted MS-FE models on the medial tibia (A) and lateral tibia (B),
and the SO-based MS-FE model on the medial tibia (C) and lateral tibia
(D), reporting the 15 subject average profile for each activity. Deviations
from the average are not shown to improve the readability.

As presented in the introduction, there have been promising
MS-FE modeling and analysis workflows of body joints such
as the knee [10]–[14], [23], [40], hip [72], and shoulder [73].
However, none of these methods are capable of both rapid FE
model generation and estimating tissue-level stresses and strains,
which govern tissue adaptation and degradation responses [4],
[34], [35]. Indeed, manually generated and analyzed workflows
require a high level of unique skills with several months of
training to perform segmentation and meshing, incorporate the
FRPVE materials model, interconnect the models, and get mod-
els to converge. Even for an expert user, those are laborious
tasks taking several weeks/months to perform manually [41].
Nevertheless, our atlas-based modeling approach showed poten-
tial for combining previously developed MS-FE models [10]–
[13], [40], [73] with a rapid generation of joint geometries
and meshes as well as implementation of material models and
loading conditions.
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C. SO-Based Compared to EMG-Assisted MS-FE
Analyses

In our previous study [14], the EMG-assisted MS-FE mod-
eling workflow bore a closer resemblance to the experiments,
compared to the SO-based MS-FE model. As a further eval-
uation, we compared the results obtained from the SO-based
and EMG-assisted MS-FE analyses using the dataset of the
current study. Outperforming the SO-based MS-FE model by
the EMG-assisted MS-FE model may be attributed to several
aspects, as follows.

The enveloped EMGs showed a wide variation between sub-
jects (Figs. S1 to S7) that may account for individual variations in
muscle recruitment strategies [16]–[22]. These variations were
also seen in the muscle activations estimated by the EMG-
assisted MS models but to a lesser degree in those estimated
by the SO-based MS models (Figs. S1 to S7). Consequently,
more variations were observed in estimated JCFs and tissue
mechanical responses using the EMG-assisted MS-FE model
compared to the SO-based model (Figs. 3 and S10 to S16).

Our EMG-assisted results had lower R2 values (when com-
paring estimated with measured muscle activations) compared
to previous studies [48], [74] (Fig. 2). This is probably due to
the inclusion of several different functional activities within the
calibration of the muscle-tendon parameters, while other studies
considered only one specific activity [48], [74]. Practically, the
number of design parameters in the calibration (i.e., number of
muscle-tendon and activation-dynamics parameters) are fixed
for an MS model, but the number of activities used in the
calibration objective function can increase, as in our study [9].
Consequently, the R2 decreases across all the varied activities
in calibration. Nonetheless, it has been reported that calibrating
MS model parameters across all the tasks of a subject, compared
to calibrating separately for each task, leads to higher R2 of
estimated JCFs compared to experiments [75]. Furthermore, in
the SO-based MS analysis, muscle activation dynamics were
excluded and rigid tendons were used. Also, the estimated
muscle activations by an SO-based MS model with a simplified
joint (i.e., a 1 DoF knee joint) are not necessarily a sub-set of
the actual neural solution [76].

Higher knee adduction moment during stand-to-sit, sit-to-
stand, and pick up compared to other activities (Figs. S10 to S16)
accounts for the lowest medial-to-total JCF ratio at the peak of
the total JCF in these three activities compared to other daily ac-
tivities (Fig. S18-B and D). Importantly, the SO-based MS model
estimated higher JCF peaks on the lateral tibia than the medial
tibia during stand-to-sit, sit-to-stand, and pick up, as opposed to
the EMG-assisted MS model. This may be due to significantly
(p<0.05) higher activation of the biceps femoris in the SO-based
MS models in contrast with those of the EMG-assisted models
and the measured EMGs (Figs. 2, S1, S2, and S5). In conclusion,
although the abduction/adduction DoF of the MS models was
locked to the subjects’ knee alignment, assisting the MS anal-
ysis with measured muscle activations (i.e., EMGs), which are
coordinated to support knee abduction/adduction moments [49],
[57], manipulated the estimated medial, lateral, and total knee
JCF. Previous studies [16]–[21] reported higher levels (up to
double) of muscle activation and co-contraction in subjects with

KOA compared to healthy individuals. Hence, assisting the MS
analyses with EMGs and considering higher correlations be-
tween the EMG envelopes and the muscle activations estimated
by the EMG-assisted MS models than those of the SO-based
models (Figs. 2 and S1 to S7) explain higher JCFs estimated by
the EMG-assisted MS models of the study, compared to those
estimated by the SO-based MS models (Figs. S10 to S16 and
S18). Consequently, and despite the potential limitation of using
an MS model with a 1 DoF knee joint, the maximum JCF of the
daily activities estimated by the EMG-assisted MS model were
more consistent with those from experiments compared to the
SO-based estimated JCFs with either 1 DoF or 12 DoFs knee
models (Fig. 3). In line with our results, it has been shown [77]
that the ability of the SO-based MS model with a 1 DoF knee
to predict the knee JCFs in different activities (other than gait)
is limited, compared to EMGs and in vivo JCFs. Likewise, we
observed fewer discrepancies between the tibial cartilage contact
area estimated by the EMG-assisted MS-FE model and those
from the experiments during gait and stair ascent [6], compared
to the SO-based MS-FE results (Fig. 5-C, D, G, H).

To summarize, the above-mentioned variations and differ-
ences, consistent with previous studies [16]–[22], [50], [77],
may emphasize the necessity of assisting the MS model with
subject-specific muscle activation patterns (i.e., EMGs), espe-
cially in individuals with MS disorders and pain.

D. Limitations

We did not group participants according to KOA grade, pain
score, etc. Rather, this study is the initial assessment of the devel-
oped MS-FE analysis pipeline. Our results showed the developed
workflow has the potential to analyze multi-level knee joint
mechanical responses of subjects with different KOA grade due
to the inclusion of subject-specific kinematics, kinetics, muscle
activation patterns, and joint geometries. Yet, complimentary
evaluations with larger cohorts and more activities are needed
to further evaluate the developed pipeline.

The muscle-tendon parameters and the muscle moment
arms of the utilized MS models were not subject-specific but
were scaled according to the measurements from the subject.
Nonetheless, the calibration module of the CEINMS using the
subject’s EMG envelopes is shown to attenuate the effect of the
muscle-tendon uncertainties on the, e.g., estimated JCFs [50].
Also, it has been reported that muscle moment arms are only
slightly affected when using subject-specific geometries (e.g.,
statistical shape modeling), as compared to a linearly scaled MS
model [78]. It is also worth mentioning that the knee contact sur-
faces were not identical between MS and FE models; however,
the measurements and scaling of the MS and FE models were
performed using the same bony landmarks.

The atlas-based FE modeling approach has been favorably
evaluated and verified against the follow-up data (i.e., KOA
progression) of initially healthy knees [39]. Nevertheless, the
magnitudes of the estimated local tissue mechanical responses
around a cartilage lesion may be a limitation of the atlas-based
FE modeling approach [79]. Also, knee joint laxity (i.e., liga-
ment laxity), as well as structure and composition of the knee
soft tissues, including the cartilages, may vary between different
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Fig. 7. Average of the collagen fibril strain estimated by the EMG-
assisted MS-FE models on the medial tibia (A) and lateral tibia (B), and
the SO-based MS-FE model on the medial tibia (C) and lateral tibia (D),
reporting the 15 subject average profile for each activity. Deviations from
the average are not shown to improve the readability.

subjects, joint sites, and due to tissue deterioration. However, no
practical methods are available to fully extract subject-specific
material properties of knee soft tissues, and hence, the soft tissue
material parameters utilized in this study were adopted from the
literature (supplementary material Section 1.3.1 and Table S2).
In addition, the purpose of our modeling and analysis workflow
is to estimate the subject’s tissue mechanics in different activities
and to predict KOA onset and progression, and hence, plan for
corrective rehabilitation early enough to avoid or slow down
cartilage degradation. Hence, the method is best applicable for
healthy subjects or those with early KOA (same as our study
participants), for which the groups’ tissue mechanical material
parameters are relatively comparable, as reported in the litera-
ture [80].

Direct validation of the estimated joint mechanics (i.e., against
in vivo measurements from study participants) required highly
invasive methods and was practically impossible. Hence, we
compared our results against the literature, which can impose
unavoidable limitations due to differences among the datasets.
The study limitations are further discussed in the supplementary
material (Section 3) for interested readers.

E. Applications and Further Developments

The developed workflow can potentially be used in the
subject-specific modification of different activities and the de-
sign of rehabilitation protocols to slow down the onset or pro-
gression of the KOA according to the estimated subject’s joint
mechanics. The FRPVE material model of the study enables
estimation of maximum principal stress and collagen fibril strain
(Figs. 6 and 7) that are related to, e.g., collagen network damage,
and fluid flow and maximum shear strain (Figs. S19 and S20)
that are related to, e.g., cell death and fixed charged density

loss of proteoglycans, and as such enables the prediction of
cartilage adaptation and degradation responses, consistent with
experiments [34], [35].

Based on these mechanobiological responses of the joint’s soft
tissue, few models have been developed to predicate cartilage
degeneration and KOA progression [4], [5], [35]. Nevertheless,
none of the studies have incorporated FRPVE materials into
a multiscale MS-FE modeling workflow considering subject-
specific joint loading during different physical activities. Thus,
integrating the EMG-assisted MS-FE pipeline of our study with
cartilage remodeling algorithms [4], [5], [35], as a part of our
further research, may bring more accuracy when subject-specific
mechanically-induced soft tissue adaptation and degeneration is
of interest.

Additionally, we plan to incorporate automated creation and
tuning of personalized muscle paths [10], [81] into the workflow
developed in the current study. Utilizing image processing,
machine learning, and surrogate modeling and optimization
techniques [10], our further studies aim to reduce the simulation
time even towards real-time EMG-assisted MS-FE analyses
(e.g., as done for the Achilles tendon [82]), and to make the
whole pipeline automatic (i.e., scaling and morphing of the MS
and FE models’ geometries) [81].

V. CONCLUSION

In this study, a semi-automated rapid MS-FE analysis pipeline
was developed and verified against experimental data. Our re-
sults emphasize the importance of assisting the MS-FE analysis
with subjects’ measured muscle activation patterns, especially
when simulating different physical activities of KOA subjects.
More importantly, the developed pipeline showed great po-
tential as a rapid MS-FE analysis toolbox to investigate the
knee mechanics that govern tissue remodeling and degradation
in different activities. Our future research aims to investigate
the feasibility of the pipeline to personalize daily activity rou-
tines and plan for corrective healthcare and rehabilitation early
enough to avoid or slow down knee cartilage degradation by
optimal loading of knee soft tissue.

APPENDIX

More information on the study is provided in the sup-
plementary material. The template FE model of the study
is available on https://doi.org/10.23729/9f761ff5-bbe3-4e76-
8f65-4587ab14ee8e.

REFERENCES

[1] C. J. Murray et al., “Disability-adjusted life years (dalys) for 291 diseases
and injuries in 21 regions, 1990-2010: A systematic analysis for the global
burden of disease study 2010,” Lancet, vol. 380, no. 9859, pp. 2197–2223,
2012.

[2] D. Ruiz Jr et al., “The direct and indirect costs to society of treatment
for end-stage knee osteoarthritis,” J. Bone Joint Surg., vol. 95, no. 16,
pp. 1473–1480, 2013.

[3] D. Felson, “Osteoarthritis as a disease of mechanics,” Osteoarthritis
Cartilage, vol. 21, no. 1, pp. 10–15, 2013.

[4] M. K. Liukkonen et al., “Evaluation of the effect of bariatric surgery-
induced weight loss on knee gait and cartilage degeneration,” J. Biome-
chanical Eng., vol. 140, no. 4, pp. 041008-1–041008-11, 2018.

[5] W. Wilson et al., “Causes of mechanically induced collagen damage in
articular cartilage,” J. Orthopaedic Res., vol. 24, no. 2, pp. 220–228, 2006.

https://doi.org/10.23729/9f761ff5-bbe3-4e76-8f65-4587ab14ee8e
https://doi.org/10.23729/9f761ff5-bbe3-4e76-8f65-4587ab14ee8e


2870 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 69, NO. 9, SEPTEMBER 2022

[6] S. Gilbert et al., “Dynamic contact mechanics on the tibial plateau of the
human knee during activities of daily living,” J. Biomech., vol. 47, no. 9,
pp. 2006–2012, 2014.

[7] I. Kutzner et al., “Loading of the knee joint during activities of daily
living measured in vivo in five subjects,” J. Biomech., vol. 43, no. 11,
pp. 2164–2173, 2010.

[8] A. Esrafilian et al., “EMG-assisted muscle force driven finite element
model of the knee joint with fibril-reinforced poroelastic cartilages and
menisci,” Sci. Rep., vol. 10, no. 1, pp. 1–16, 2020.

[9] C. Pizzolato et al., “CEINMS: A toolbox to investigate the influence of
different neural control solutions on the prediction of muscle excitation
and joint moments during dynamic motor tasks,” J. Biomech., vol. 48,
no. 14, pp. 3929–3936, 2015.

[10] I. Eskinazi and B. J. Fregly, “A computational framework for simultaneous
estimation of muscle and joint contact forces and body motion using
optimization and surrogate modeling,” Med. Eng. Phys., vol. 54, pp. 56–64,
2018.

[11] R. L. Lenhart et al., “Prediction and validation of load-dependent behavior
of the tibiofemoral and patellofemoral joints during movement,” Ann.
Biomed. Eng., vol. 43, no. 11, pp. 2675–2685, 2015.

[12] H. Marouane, A. Shirazi-Adl, and M. Adouni, “Alterations in knee contact
forces and centers in stance phase of gait: A detailed lower extrem-
ity musculoskeletal model,” J. Biomech., vol. 49, no. 2, pp. 185–192,
2016.

[13] M. A. Marra et al., “A subject-specific musculoskeletal modeling frame-
work to predict in vivo mechanics of total knee arthroplasty,” J. Biome-
chanical Eng., vol. 137, no. 2, pp. 020904-1–020904-12, 2015.

[14] A. Esrafilian et al., “12 degrees of freedom muscle force driven fibril-
reinforced poroviscoelastic finite element model of the knee joint,” IEEE
Trans. Neural Syst. Rehabil. Eng., vol. 29, pp. 123–133, 2021.

[15] L. P. Räsänen et al., “The effect of fixed charge density and cartilage
swelling on mechanics of knee joint cartilage during simulated gait,” J.
Biomech., vol. 61, pp. 34–44, 2017.

[16] T. L. Heiden, D. G. Lloyd, and T. R. Ackland, “Knee joint kinematics,
kinetics and muscle co-contraction in knee osteoarthritis patient gait,” Clin.
Biomech., vol. 24, no. 10, pp. 833–841, 2009.

[17] C. L. Hubley-Kozey et al., “Co-activation differences in lower limb
muscles between asymptomatic controls and those with varying degrees
of knee osteoarthritis during walking,” Clin. Biomech., vol. 24, no. 5,
pp. 407–414, 2009.

[18] B. Killen et al., “Individual muscle contributions to tibiofemoral com-
pressive articular loading during walking, running and sidestepping,” J.
Biomech., vol. 80, pp. 23–31, 2018.

[19] D. Kumar, K. T. Manal, and K. S. Rudolph, “Knee joint loading during gait
in healthy controls and individuals with knee osteoarthritis,” Osteoarthritis
Cartilage, vol. 21, no. 2, pp. 298–305, 2013.

[20] S. C. O’reilly et al., “Quadriceps weakness in knee osteoarthritis: The effect
on pain and disability,” Ann. Rheumatic Dis., vol. 57, no. 10, pp. 588–594,
1998.

[21] L. C. Schmitt and K. S. Rudolph, “Muscle stabilization strategies in people
with medial knee osteoarthritis: The effect of instability,” J. Orthopaedic
Res., vol. 26, no. 9, pp. 1180–1185, 2008.

[22] S. Van Rossom et al., “Knee joint loading in healthy adults during func-
tional exercises: Implications for rehabilitation guidelines,” J. Orthopaedic
Sports Phys. Ther., vol. 48, no. 3, pp. 162–173, 2018.

[23] K. Halonen et al., “Workflow assessing the effect of gait alterations on
stresses in the medial tibial cartilage-combined musculoskeletal modelling
and finite element analysis,” Sci. Rep., vol. 7, no. 1, pp. 1–14, 2017.

[24] C. M. Dzialo et al., “Gait alteration strategies for knee osteoarthritis: A
comparison of joint loading via generic and patient-specific musculoskele-
tal model scaling techniques,” Int. Biomech., vol. 6, no. 1, pp. 54–65,
2019.

[25] K. S. Halonen et al., “Importance of patella, quadriceps forces, and depth-
wise cartilage structure on knee joint motion and cartilage response during
gait,” J. Biomechanical Eng., vol. 138, no. 7, pp. 071002-1–071002-11,
2016.

[26] W. Mesfar and A. Shirazi-Adl, “Knee joint biomechanics in open-kinetic-
chain flexion exercises,” Clin. Biomech., vol. 23, no. 4, pp. 477–482,
2008.

[27] P. Gerus et al., “Subject-specific knee joint geometry improves predictions
of medial tibiofemoral contact forces,” J. Biomech., vol. 46, no. 16,
pp. 2778–2786, 2013.

[28] J. Ihn, S. Kim, and I. Park, “In vitro study of contact area and pressure
distribution in the human knee after partial and total meniscectomy,” Int.
Orthopaedics, vol. 17, no. 4, pp. 214–218, 1993.

[29] M. Kelly et al., “Structure and function of the meniscus: Basic and clinical
implications,” in Biomechanics of Diarthrodial Joints. Berlin, Germany:
Springer, 1990, pp. 191–211.

[30] E. L. Radin, F. de Lamotte, and P. Maquet, “Role of the menisci in
the distribution of stress in the knee,” Clin. Orthopaedics Related Res.,
vol. 185, pp. 290–294, 1984.

[31] O. Klets et al., “Comparison of different material models of articular
cartilage in 3 d computational modeling of the knee: Data from the
osteoarthritis initiative (OAI),” J. Biomech., vol. 49, no. 16, pp. 3891–3900,
2016.

[32] J. Mäkelä et al., “Very early osteoarthritis changes sensitively fluid
flow properties of articular cartilage,” J. Biomech., vol. 48, no. 12,
pp. 3369–3376, 2015.

[33] J. P. Quiroga et al., “Relative contribution of articular cartilage’s consti-
tutive components to load support depending on strain rate,” Biomech.
Model. Mechanobiol., vol. 16, no. 1, pp. 151–158, 2017.

[34] S. Hosseini et al., “A numerical model to study mechanically induced
initiation and progression of damage in articular cartilage,” Osteoarthritis
Cartilage, vol. 22, no. 1, pp. 95–103, 2014.

[35] G. A. Orozco et al., “Prediction of local fixed charge density loss in
cartilage following acl injury and reconstruction: A computational proof-
of-concept study with mri follow-up,” J. Orthopaedic Res., vol. 39, no. 5,
pp. 1064–1081, 2020.

[36] A. H.-D. Cheng, “Poroviscoelasticity,” in Poroelasticity. Berlin, Germany:
Springer, 2016, pp. 573–597.

[37] N. Mukherjee and J. S. Wayne, “Load sharing between solid and fluid
phases in articular cartilage: II - comparison of experimental results and
u-p finite element predictions,” J. Biomechanical Eng., vol. 120, no. 5,
pp. 620–624, 1998.

[38] P. O. Bolcos et al., “Identification of locations susceptible to osteoarthritis
in patients with anterior cruciate ligament reconstruction: Combining knee
joint computational modelling with follow-up t1ρ and t2 imaging,” Clin.
Biomech., vol. 79, 2020, Art. no. 104844.

[39] M. E. Mononen, M. K. Liukkonen, and R. K. Korhonen, “Utilizing atlas-
based modeling to predict knee joint cartilage degeneration: Data from the
osteoarthritis initiative,” Ann. Biomed. Eng., vol. 47, no. 3, pp. 813–825,
2019.

[40] A. Navacchia et al., “A computationally efficient strategy to estimate
muscle forces in a finite element musculoskeletal model of the lower limb,”
J. Biomech., vol. 84, pp. 94–102, 2019.

[41] P. O. Bolcos et al., “Comparison between kinetic and kinetic-kinematic
driven knee joint finite element models,” Sci. Rep., vol. 8, no. 1, pp. 1–11,
2018.

[42] R. Altman et al., “Development of criteria for the classification and
reporting of osteoarthritis: Classification of osteoarthritis of the knee,”
Arthritis Rheumatism: Official J. Amer. College Rheumatol., vol. 29, no. 8,
pp. 1039–1049, 1986.

[43] H. J. Hermens et al., “European recommendations for surface electromyo-
graphy,” Roessingh Res. Develop., vol. 8, no. 2, pp. 13–54, 1999.

[44] A. Mantoan et al., “Motonms: A matlab toolbox to process motion data for
neuromusculoskeletal modeling and simulation,” Source Code Biol. Med.,
vol. 10, no. 1, pp. 1–14, 2015.

[45] D. G. Lloyd and T. F. Besier, “An EMG-driven musculoskeletal model
to estimate muscle forces and knee joint moments in vivo,” J. Biomech.,
vol. 36, no. 6, pp. 765–776, 2003.

[46] D. S. Catelli et al., “A musculoskeletal model customized for squatting
task,” Comput. Methods Biomech. Biomed. Eng., vol. 22, no. 1, pp. 21–24,
2019.

[47] Z. F. Lerner et al., “How tibiofemoral alignment and contact locations
affect predictions of medial and lateral tibiofemoral contact forces,” J.
Biomech., vol. 48, no. 4, pp. 644–650, 2015.

[48] G. Davico et al., “Increasing level of neuromusculoskeletal model person-
alisation to investigate joint contact forces in cerebral palsy: A twin case
study,” Clin. Biomech., vol. 72, pp. 141–149, 2020.

[49] D. J. Saxby et al., “Tibiofemoral contact forces during walking, running
and sidestepping,” Gait Posture, vol. 49, pp. 78–85, 2016.

[50] J. P. Walter et al., “Muscle synergies may improve optimization prediction
of knee contact forces during walking,” J. Biomechanical Eng., vol. 136,
no. 2, pp. 021031-1–021031-9, 2014.

[51] D. R. Hume et al., “Comparison of marker-based and stereo radiography
knee kinematics in activities of daily living,” Ann. Biomed. Eng., vol. 46,
no. 11, pp. 1806–1815, 2018.

[52] S. L. Delp et al., “Opensim: Open-source software to create and analyze
dynamic simulations of movement,” IEEE Trans. Biomed. Eng., vol. 54,
no. 11, pp. 1940–1950, Nov. 2007.



ESRAFILIAN et al.: EMG-ASSISTED MUSCLE-FORCE DRIVEN FINITE ELEMENT ANALYSIS PIPELINE 2871

[53] M. Yamagata et al., “The effects of knee pain on knee contact force and
external knee adduction moment in patients with knee osteoarthritis,” J.
Biomech., vol. 123, 2021, Art. no. 110538.

[54] T. Matsumoto et al., “A radiographic analysis of alignment of the lower
extremities-initiation and progression of varus-type knee osteoarthritis,”
Osteoarthritis Cartilage, vol. 23, no. 2, pp. 217–223, 2015.

[55] M. Adouni and A. Shirazi-Adl, “Partitioning of knee joint internal forces in
gait is dictated by the knee adduction angle and not by the knee adduction
moment,” J. Biomech., vol. 47, no. 7, pp. 1696–1703, 2014.

[56] A. Mündermann, C. O. Dyrby, and T. P. Andriacchi, “A comparison of
measuring mechanical axis alignment using three-dimensional position
capture with skin markers and radiographic measurements in patients with
bilateral medial compartment knee osteoarthritis,” Knee, vol. 15, no. 6,
pp. 480–485, 2008.

[57] D. G. Lloyd and T. S. Buchanan, “Strategies of muscular support of varus
and valgus isometric loads at the human knee,” J. Biomech., vol. 34, no. 10,
pp. 1257–1267, 2001.

[58] K. Manal and T. S. Buchanan, “An electromyogram-driven musculoskele-
tal model of the knee to predict in vivo joint contact forces during
normal and novel gait patterns,” J. Biomech. Eng., vol. 135, no. 2,
pp. 021014-1–021014-7, 2013.

[59] M. Sartori, D. Farina, and D. G. Lloyd, “Hybrid neuromusculoskeletal
modeling to best track joint moments using a balance between muscle
excitations derived from electromyograms and optimization,” J. Biomech.,
vol. 47, no. 15, pp. 3613–3621, 2014.

[60] P. Julkunen et al., “Characterization of articular cartilage by combining
microscopic analysis with a fibril-reinforced finite-element model,” J.
Biomech., vol. 40, no. 8, pp. 1862–1870, 2007.

[61] W. Wilson et al., “A fibril-reinforced poroviscoelastic swelling model for
articular cartilage,” J. Biomech., vol. 38, no. 6, pp. 1195–1204, 2005.

[62] E. A. Makris, P. Hadidi, and K. A. Athanasiou, “The knee menis-
cus: Structure-function, pathophysiology, current repair techniques, and
prospects for regeneration,” Biomaterials, vol. 32, no. 30, pp. 7411–7431,
2011.

[63] L. P. Räsänen et al., “Three dimensional patient-specific collagen architec-
ture modulates cartilage responses in the knee joint during gait,” Comput.
Methods Biomech. Biomed. Eng., vol. 19, no. 11, pp. 1225–1240, 2016.

[64] L. P. Räsänen et al., “Implementation of subject-specific collagen architec-
ture of cartilage into a 2D computational model of a knee joint-data from
the osteoarthritis initiative (OAI),” J. Orthopaedic Res., vol. 31, no. 1,
pp. 10–22, 2013.

[65] K. Halonen et al., “Deformation of articular cartilage during static loading
of a knee joint-experimental and finite element analysis,” J. Biomech.,
vol. 47, no. 10, pp. 2467–2474, 2014.

[66] P. Atkinson et al., “A comparison of the mechanical and dimensional
properties of the human medial and lateral patellofemoral ligaments,” in
Proc. 46th Annu. Meeting Orthopaedic Res. Soc., Orlando, FL, USA, 2000,
Art. no. 0776.

[67] L. Blankevoort and R. Huiskes, “Ligament-bone interaction in a three-
dimensional model of the knee,” J. Biomechanical Eng., vol. 113, no. 3,
pp. 263–269, 1991.

[68] L. Schatzmann, P. Brunner, and H. Stäubli, “Effect of cyclic precondition-
ing on the tensile properties of human quadriceps tendons and patellar
ligaments,” Knee Surg. Sports Traumatol. Arthroscopy, vol. 6, no. 1,
pp. S56–S61, 1998.

[69] D. F. Villegas et al., “Failure properties and strain distribution analysis of
meniscal attachments,” J. Biomech., vol. 40, no. 12, pp. 2655–2662, 2007.

[70] T. C. Pataky, “Generalized n-dimensional biomechanical field analy-
sis using statistical parametric mapping,” J. Biomech., vol. 43, no. 10,
pp. 1976–1982, 2010.

[71] M. Adouni and A. Shirazi-Adl, “Evaluation of knee joint muscle forces
and tissue stresses-strains during gait in severe oa versus normal subjects,”
J. Orthopaedic Res., vol. 32, no. 1, pp. 69–78, 2014.

[72] J. Li, “Development and validation of a finite-element musculoskeletal
model incorporating a deformable contact model of the hip joint during
gait,” J. Mech. Behav. Biomed. Mater., vol. 113, 2021, Art. no. 104136.

[73] N. N. Dixit et al., “Integrated iterative musculoskeletal modeling pre-
dicts bone morphology following brachial plexus birth injury (BPBI),” J.
Biomech., vol. 103, 2020, Art. no. 109658.

[74] H. X. Hoang et al., “A calibrated emg-informed neuromusculoskeletal
model can appropriately account for muscle co-contraction in the esti-
mation of hip joint contact forces in people with hip osteoarthritis,” J.
Biomech., vol. 83, pp. 134–142, 2019.

[75] A. Kian et al., “The effectiveness of EMG-driven neuromusculoskele-
tal model calibration is task dependent,” J. Biomech., vol. 129, 2021,
Art. no. 110698.

[76] A. Jinha, R. Ait-Haddou, and W. Herzog, “Predictions of co-contraction
depend critically on degrees-of-freedom in the musculoskeletal model,” J.
Biomech., vol. 39, no. 6, pp. 1145–1152, 2006.

[77] Z. I. Nejad et al., “The capacity of generic musculoskeletal simulations to
predict knee joint loading using the CAMS-KNEE datasets,” Ann. Biomed.
Eng., vol. 48, no. 4, pp. 1430–1440, 2020.

[78] J. S. Bahl et al., “Statistical shape modelling versus linear scaling: Effects
on predictions of hip joint centre location and muscle moment arms
in people with hip osteoarthritis,” J. Biomech., vol. 85, pp. 164–172,
2019.

[79] K. A. Myller et al., “Computational evaluation of altered biomechanics
related to articular cartilage lesions observed in vivo,” J. Orthopaedic Res.,
vol. 37, no. 5, pp. 1042–1051, 2019.

[80] M. Ebrahimi et al., “Elastic, viscoelastic and fibril-reinforced poroelastic
material properties of healthy and osteoarthritic human tibial cartilage,”
Ann. Biomed. Eng., vol. 47, no. 4, pp. 953–966, 2019.

[81] B. Killen et al., “Automated creation and tuning of personalised muscle
paths for opensim musculoskeletal models of the knee joint,” Biomech.
Model. Mechanobiol., vol. 20, pp. 521–533, 2021.

[82] C. Pizzolato et al., “Targeted achilles tendon training and rehabilitation
using personalized and real-time multiscale models of the neuromuscu-
loskeletal system,” Front. Bioeng. Biotechnol., vol. 8, 2020, Art. no. 878.


