754 research outputs found

    Severe multidirectional instability of the gleno-humeral joint

    Get PDF
    The article presents a case study of a 22 year-old female college athlete with multidirectional instability (MDI) of the glen-humeral (GH) joint. The athlete participated in overhead sports activities such as softball, basketball and swimming, and her presenting symptoms included decreased function, crepitus and spontaneous subluxation. Clinical management and range of motion (ROM) measurement are also discussed

    Defective Base Excision Repair of Oxidative DNA Damage in Vascular Smooth Muscle Cells Promotes Atherosclerosis

    Get PDF
    Background: Atherosclerotic plaques demonstrate extensive accumulation of oxidative DNA damage, predominantly as 8-oxoguanine (8oxoG) lesions. 8oxoG is repaired by base excision repair enzymes; however, the mechanisms regulating 8oxoG accumulation in vascular smooth muscle cells (VSMCs) and its effects on their function and in atherosclerosis are unknown. Methods: We studied levels of 8oxoG and its regulatory enzymes in human atherosclerosis, the mechanisms regulating 8oxoG repair and the base excision repair enzyme 8oxoG DNA glycosylase I (OGG1) in VSMCs in vitro, and the effects of reducing 8oxoG in VSMCs in atherosclerosis in ApoE−/− mice. Results: Human plaque VSMCs showed defective nuclear 8oxoG repair, associated with reduced acetylation of OGG1. OGG1 was a key regulatory enzyme of 8oxoG repair in VSMCs, and its acetylation was crucial to its repair function through regulation of protein stability and expression. p300 and sirtuin 1 were identified as the OGG1 acetyltransferase and deacetylase regulators, respectively, and both proteins interacted with OGG1 and regulated OGG1 acetylation at endogenous levels. However, p300 levels were decreased in human plaque VSMCs and in response to oxidative stress, suggesting that reactive oxygen species–induced regulation of OGG1 acetylation could be caused by reactive oxygen species–induced decrease in p300 expression. We generated mice that express VSMC-restricted OGG1 or an acetylation defective version (SM22α-OGG1 and SM22α-OGG1K-R mice) and crossed them with ApoE−/− mice. We also studied ApoE−/− mice deficient in OGG1 (OGG1−/−). OGG1−/− mice showed increased 8oxoG in vivo and increased atherosclerosis, whereas mice expressing VSMC-specific OGG1 but not the acetylation mutant OGG1K-R showed markedly reduced intracellular 8oxoG and reduced atherosclerosis. VSMC OGG1 reduced telomere 8oxoG accumulation, DNA strand breaks, cell death and senescence after oxidant stress, and activation of proinflammatory pathways. Conclusions: We identify defective 8oxoG base excision repair in human atherosclerotic plaque VSMCs, OGG1 as a major 8oxoG repair enzyme in VSMCs, and p300/sirtuin 1 as major regulators of OGG1 through acetylation/deacetylation. Reducing oxidative damage by rescuing OGG1 activity reduces plaque development, indicating the detrimental effects of 8oxoG on VSMC function

    Unrelated Helpers in a Primitively Eusocial Wasp: Is Helping Tailored Towards Direct Fitness?

    Get PDF
    The paper wasp Polistes dominulus is unique among the social insects in that nearly one-third of co-foundresses are completely unrelated to the dominant individual whose offspring they help to rear and yet reproductive skew is high. These unrelated subordinates stand to gain direct fitness through nest inheritance, raising the question of whether their behaviour is adaptively tailored towards maximizing inheritance prospects. Unusually, in this species, a wealth of theory and empirical data allows us to predict how unrelated subordinates should behave. Based on these predictions, here we compare helping in subordinates that are unrelated or related to the dominant wasp across an extensive range of field-based behavioural contexts. We find no differences in foraging effort, defense behaviour, aggression or inheritance rank between unrelated helpers and their related counterparts. Our study provides no evidence, across a number of behavioural scenarios, that the behaviour of unrelated subordinates is adaptively modified to promote direct fitness interests

    Human Visfatin Expression: Relationship to Insulin Sensitivity, Intramyocellular Lipids, and Inflammation

    Get PDF
    Context: Visfatin (VF) is a recently described adipokine preferentially secreted by visceral adipose tissue (VAT) with insulin mimetic properties. Objective: The aim of this study was to examine the association of VF with insulin sensitivity, intramyocellular lipids (IMCL), and inflammation in humans. Design and Patients: VF mRNA was examined in paired samples of VAT and abdominal sc adipose tissue (SAT) obtained from subjects undergoing surgery. Plasma VF and VF mRNA was also examined in SAT and muscle tissue, obtained by biopsy from well-characterized subjects with normal or impaired glucose tolerance, with a wide range in body mass index (BMI) and insulin sensitivity (SI). Setting: The study was conducted at a University Hospital and General Clinical Research Center. Intervention: SI was measured, and fat and muscle biopsies were performed. In impaired glucose tolerance subjects, these procedures were performed before and after treatment with pioglitazone or metformin. Main Outcome Measures: We measured the relationship between VF and obesity, SI, adipose tissue inflammation, IMCL, and response to insulin sensitizers. Results: No significant difference in VF mRNA was seen between SAT and VAT depots. VAT VF mRNA associated positively with BMI, whereas SAT VF mRNA decreased with BMI. SAT VF correlated positively with SI, and the association of SAT VF mRNA with SI was independent of BMI. IMCL and markers of inflammation (adipose CD68 and plasma TNFα) were negatively associated with SAT VF. Impaired glucose tolerance subjects treated with pioglitazone showed no change in SAT VF mRNA despite a significant increase in SI. Plasma VF and muscle VF mRNA did not correlate with BMI or SI or IMCL, and there was no change in muscle VF with either pioglitazone or metformin treatments. Conclusion: SAT VF is highly expressed in lean, more insulinsensitive subjects and is attenuated in subjects with high IMCL, low SI, and high levels of inflammatory markers. VAT VF and SAT VF are regulated oppositely with BMI

    Retinol Binding Protein 4 Expression in Humans: Relationship to Insulin Resistance, Inflammation, and Response to Pioglitazone

    Get PDF
    Context: Retinol binding protein 4 (RBP4) was recently found to be expressed and secreted by adipose tissue, and was strongly associated with insulin resistance. Objective: The aim was to determine the relationship between RBP4 and obesity, insulin resistance, and other markers of insulin resistance in humans. Design and Patients: RBP4 mRNA levels in adipose tissue and muscle of nondiabetic human subjects with either normal or impaired glucose tolerance (IGT) were studied, along with plasma RBP4. RBP4 gene expression was also measured in adipose tissue fractions, and from visceral and sc adipose tissue (SAT) from surgical patients. Setting: The study was conducted at University Hospital and General Clinical Research Center. Intervention: Insulin sensitivity (SI) was measured, and fat and muscle biopsies were performed. In IGT subjects, these procedures were performed before and after treatment with metformin or pioglitazone. Main Outcome Measures: The relationship between RBP4 expression and obesity, SI, adipose tissue inflammation, and intramyocellular lipid level, and response to insulin sensitizers was measured. Results: RBP4 was expressed predominantly from the adipocyte fraction of SAT. Although SAT RBP4 expression and the plasma RBP4 level demonstrated no significant relationship with body mass index or SI, there was a strong positive correlation between RBP4 mRNA and adipose inflammation (monocyte chemoattractant protein-1 and CD68), and glucose transporter 4 mRNA. Treatment of IGT subjects with pioglitazone resulted in an increase in SI and an increase in RBP4 gene expression in both adipose tissue and muscle, but not in plasma RBP4 level, and the in vitro treatment of cultured adipocytes with pioglitazone yielded a similar increase in RBP4 mRNA. Conclusions: RBP4 gene expression in humans is associated with inflammatory markers, but not with insulin resistance. The increase in RBP4 mRNA after pioglitazone treatment is unusual, suggesting a complex regulation of this novel adipokine

    Anthropogenic Space Weather

    Full text link
    Anthropogenic effects on the space environment started in the late 19th century and reached their peak in the 1960s when high-altitude nuclear explosions were carried out by the USA and the Soviet Union. These explosions created artificial radiation belts near Earth that resulted in major damages to several satellites. Another, unexpected impact of the high-altitude nuclear tests was the electromagnetic pulse (EMP) that can have devastating effects over a large geographic area (as large as the continental United States). Other anthropogenic impacts on the space environment include chemical release ex- periments, high-frequency wave heating of the ionosphere and the interaction of VLF waves with the radiation belts. This paper reviews the fundamental physical process behind these phenomena and discusses the observations of their impacts.Comment: 71 pages, 35 figure

    Seasonal Dependence of SMAP Radiometer-Based Soil Moisture Performance as Observed over Core Validation Sites

    Get PDF
    The NASA SMAP (Soil Moisture Active Passive) mission provides a global coverage of soil moisture measurements based on its L-band microwave radiometer every 2-3 days at about 40 km resolution. The soil moisture retrieval algorithms model the brightness temperature as a function of soil moisture, surface conditions and vegetation. External data sources inform the algorithms about the surface conditions and vegetation, which enable the retrieval of soil moisture. The inversion process contains uncertainties related to radiometer measurements, forward model assumptions and ancillary data sources. This study focuses on the uncertainties that depend on the seasonal evolution of the surface conditions and vegetation. This study compares the SMAP and core validation site (CVS) soil moisture values over a period of three years to extract the evolution of performance metrics over time. The analysis showed that most CVS that include managed agriculture exhibit significant time-dependent seasonal bias. This bias was linked to seasonal temperature cycle, which is a proxy to several features that can cause seasonally dependent errors in the SMAP product

    Mitochondrial respiration is reduced in atherosclerosis, promoting necrotic core formation and reducing relative fibrous cap thickness

    Get PDF
    OBJECTIVE: Mitochondrial DNA (mtDNA) damage is present in murine and human atherosclerotic plaques. However, whether endogenous levels of mtDNA damage are sufficient to cause mitochondrial dysfunction and whether decreasing mtDNA damage and improving mitochondrial respiration affects plaque burden or composition are unclear. We examined mitochondrial respiration in human atherosclerotic plaques and whether augmenting mitochondrial respiration affects atherogenesis. APPROACH AND RESULTS: Human atherosclerotic plaques showed marked mitochondrial dysfunction, manifested as reduced mtDNA copy number and oxygen consumption rate in fibrous cap and core regions. Vascular smooth muscle cells derived from plaques showed impaired mitochondrial respiration, reduced complex I expression, and increased mitophagy, which was induced by oxidized low-density lipoprotein. Apolipoprotein E-deficient (ApoE-/-) mice showed decreased mtDNA integrity and mitochondrial respiration, associated with increased mitochondrial reactive oxygen species. To determine whether alleviating mtDNA damage and increasing mitochondrial respiration affects atherogenesis, we studied ApoE-/- mice overexpressing the mitochondrial helicase Twinkle (Tw+/ApoE-/-). Tw+/ApoE-/- mice showed increased mtDNA integrity, copy number, respiratory complex abundance, and respiration. Tw+/ApoE-/- mice had decreased necrotic core and increased fibrous cap areas, and Tw+/ApoE-/- bone marrow transplantation also reduced core areas. Twinkle increased vascular smooth muscle cell mtDNA integrity and respiration. Twinkle also promoted vascular smooth muscle cell proliferation and protected both vascular smooth muscle cells and macrophages from oxidative stress-induced apoptosis. CONCLUSIONS: Endogenous mtDNA damage in mouse and human atherosclerosis is associated with significantly reduced mitochondrial respiration. Reducing mtDNA damage and increasing mitochondrial respiration decrease necrotic core and increase fibrous cap areas independently of changes in reactive oxygen species and may be a promising therapeutic strategy in atherosclerosis
    • …
    corecore