169 research outputs found

    Parameter Mismatches and Perfect Anticipating Synchronization in bi-directionally coupled external cavity laser diodes

    Full text link
    We study perfect chaos synchronization between two bi-directionally coupled external cavity semiconductor lasers and demonstrate for the first time that mismatches in laser photon decay rates can explain the experimentally observed anticipating time in synchronization.Comment: Latex 4 page

    Inverse Anticipating Synchronization

    Full text link
    We report a new type of chaos synchronization:inverse anticipating synchronization, where a time delay chaotic system can drive another system in such a way that the driven system anticipates the driver by synchronizing with its inverse future state. We extend the concept of inverse anticipating chaos synchronization to cascaded systems. We propose means for the experimental observation of inverse anticipating chaos synchronization in external cavity lasers.Comment: LaTex 6 pages, resubmitted to PR

    Lag time and parameter mismatches in synchronization of unidirectionally coupled chaotic external cavity semiconductor lasers

    Full text link
    We report an analysis of synchronization between two unidirectionally coupled chaotic external cavity master/slave semiconductor lasers with two characteristic delay times, where the delay time in the coupling is different from the delay time in the coupled systems themselves. We demonstrate for the first time that parameter mismatches in photon decay rates for the master and slave lasers can explain the experimental observation that the lag time is equal to the coupling delay time.Comment: LaTex, 5 pages, submitted to PRE(R

    Spatiotemporal communication with synchronized optical chaos

    Full text link
    We propose a model system that allows communication of spatiotemporal information using an optical chaotic carrier waveform. The system is based on broad-area nonlinear optical ring cavities, which exhibit spatiotemporal chaos in a wide parameter range. Message recovery is possible through chaotic synchronization between transmitter and receiver. Numerical simulations demonstrate the feasibility of the proposed scheme, and the benefit of the parallelism of information transfer with optical wavefronts.Comment: 4 pages, 5 figure

    Multilocational testing of pigeonpea for broad-based resistance to sterility mosaic in India

    Get PDF
    During 1978-83, 88 pigeon pea lines resistant to sterility mosaic (SM) from different research centres in India were tested at 10 locations (Badnapur, Bangalore, Dholi, Pantnagar, Faizabad, Kanpur, Ludhiana, Patancheru, Vamban and Varanasi) to identify lines with stable and broad-based resistance. The multilocation evaluation was carried out through the joint Indian Council of Agricultural Research and the ICRISAT Uniform Trial for Pigeon Pea Sterility Mosaic Resistance. SM resistant genotypes were identified at each of the 10 locations. Lines ICP 7867, ICP 10976 and ICP 10977 were resistant or tolerant at all 10 locations. These lines are now being used by breeders at ICRISAT as well as in the Indian national programme for developing SM resistant and high yielding cultivars

    2-Arylamino-6-ethynylpurines are cysteine-targeting irreversible inhibitors of Nek2 kinase

    Get PDF
    Renewed interest in covalent inhibitors of enzymes implicated in disease states has afforded several agents targeted at protein kinases of relevance to cancers. We now report the design, synthesis and biological evaluation of 6-ethynylpurines that act as covalent inhibitors of Nek2 by capturing a cysteine residue (Cys22) close to the catalytic domain of this protein kinase. Examination of the crystal structure of the non-covalent inhibitor 3-((6-cyclohexylmethoxy-7H-purin-2-yl)amino)benzamide in complex with Nek2 indicated that replacing the alkoxy with an ethynyl group places the terminus of the alkyne close to Cys22 and in a position compatible with the stereoelectronic requirements of a Michael addition. A series of 6-ethynylpurines was prepared and a structure activity relationship (SAR) established for inhibition of Nek2. 6-Ethynyl-N-phenyl-7H-purin-2-amine [IC50 0.15 μM (Nek2)] and 4-((6-ethynyl-7H-purin-2-yl)amino)benzenesulfonamide (IC50 0.14 μM) were selected for determination of the mode of inhibition of Nek2, which was shown to be time-dependent, not reversed by addition of ATP and negated by site directed mutagenesis of Cys22 to alanine. Replacement of the ethynyl group by ethyl or cyano abrogated activity. Variation of substituents on the N-phenyl moiety for 6-ethynylpurines gave further SAR data for Nek2 inhibition. The data showed little correlation of activity with the nature of the substituent, indicating that after sufficient initial competitive binding to Nek2 subsequent covalent modification of Cys22 occurs in all cases. A typical activity profile was that for 2-(3-((6-ethynyl-9H-purin-2-yl)amino)phenyl)acetamide [IC50 0.06 μM (Nek2); GI50 (SKBR3) 2.2 μM] which exhibited >5–10-fold selectivity for Nek2 over other kinases; it also showed > 50% growth inhibition at 10 μM concentration against selected breast and leukaemia cell lines. X-ray crystallographic analysis confirmed that binding of the compound to the Nek2 ATP-binding site resulted in covalent modification of Cys22. Further studies confirmed that 2-(3-((6-ethynyl-9H-purin-2-yl)amino)phenyl)acetamide has the attributes of a drug-like compound with good aqueous solubility, no inhibition of hERG at 25 μM and a good stability profile in human liver microsomes. It is concluded that 6-ethynylpurines are promising agents for cancer treatment by virtue of their selective inhibition of Nek2

    Physics and Applications of Laser Diode Chaos

    Full text link
    An overview of chaos in laser diodes is provided which surveys experimental achievements in the area and explains the theory behind the phenomenon. The fundamental physics underpinning this behaviour and also the opportunities for harnessing laser diode chaos for potential applications are discussed. The availability and ease of operation of laser diodes, in a wide range of configurations, make them a convenient test-bed for exploring basic aspects of nonlinear and chaotic dynamics. It also makes them attractive for practical tasks, such as chaos-based secure communications and random number generation. Avenues for future research and development of chaotic laser diodes are also identified.Comment: Published in Nature Photonic
    corecore