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Research Article
Deficiency of Dietary Fiber in Slc5a8-Null Mice Promotes
Bacterial Dysbiosis and Alters Colonic Epithelial
Transcriptome towards Proinflammatory Milieu
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Inflammatory bowel disease (IBD) is characterized by chronic inflammation in the intestinal tract due to disruption of the
symbiotic relationship between the host immune system and microbiota. Various factors alter the gut microbiota which lead to
dysbiosis; in particular, diet and dietary fibers constitute important determinants. Dietary fiber protects against IBD; bacteria
ferment these dietary fibers in colon and generate short-chain fatty acids (SCFAs), whichmediate the anti-inflammatory actions of
dietary fibers. SLC5A8 is a high-affinity transporter in the apical membrane of colonic epithelium which mediates the entry of
SCFAs from the lumen into cells in Na+-coupled manner. Due to the unique transport kinetics, the function of the transporter
becomes important only under conditions of low dietary fiber intake. Here, we have examined the impact of dietary fiber
deficiency on luminal microbial composition and transcriptomic profile in colonic epithelium in wild-type (WT) and Slc5a8-null
(KO) mice. We fed WT and KO mice with fiber-containing diet (FC-diet) or fiber-free diet (FF-diet) and analyzed the luminal
bacterial composition by sequencing 16S rRNA gene in feces. Interestingly, results showed significant differences in the microbial
community depending on dietary fiber content and on the presence or absence of Slc5a8. )ere were also marked differences in
the transcriptomic profile of the colonic epithelium depending on the dietary fiber content and on the presence or absence of
Slc5a8. We conclude that absence of fiber in diet in KOmice causes bacterial dysbiosis and alters gene expression in the colon that
is conducive for inflammation.

1. Introduction

Inflammatory Bowel Diseases (IBD) including Crohn’s
disease and ulcerative colitis are characterized by chronic
inflammation in the intestine. IBD is a complex disease with
multiple etiological factors involved in its development and
pathogenesis. Among them, environmental factors such as
diet and the microbiome play a critical role [1, 2]. Another
important factor is epigenetic modifications, which plays a
vital role in the proper functioning and maintenance of

intestine by controlling the development of the intestinal
epithelium and the immune cells in the lamina propria [3].
)e intestinal tract is in continuous intimate contact with
microbiota. Under normal physiological conditions, both
the epithelial cells as well as the immune cells in the lamina
propria contribute to the maintenance of the intestinal
barrier function and to the development of tolerance to the
bacteria found in the normal colon. Conditions that disrupt
the functions of the epithelial cells and the immune cells alter
the composition of the bacteria in the colon; such changes in
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colonic bacteria, known as dysbiosis, are well recognized as
important etiological factors in the pathogenesis of IBD
[4, 5].

Previous studies have shown that diet is a vital factor in
shaping the gut microbiota and changes in the dietary
components profoundly alter microbial communities,
thereby increasing the susceptibility to various diseases
[4, 5]. )e western diet is significantly deficient in fiber,
much lower than the normal recommended value [6]. Diet
deficient in fiber causes dysbiosis that leads to breakdown of
the epithelial barrier function and activation of the immune
system leading to proinflammatory conditions [5]. In
contrast, diet rich in fiber enhances epithelial barrier
function, suppresses immune function, and protects against
immune activation [7]. In addition to these beneficial effects
on the host, dietary fiber also provides energy substrates for
gut bacteria and determines the relative abundance of
various bacterial strains that reside in the gut. When the diet
is deficient in fiber, gut microbiota uses the carbohydrates
present in the mucus layer of the gut as energy substrates,
consequently thinning the protective mucus layer [7].

SLC5A8 is a Na+-coupled high-affinity transporter for
SCFAs; it is located in the lumen-facing apical membrane
of colonic epithelial cells [8–10]. SLC5A8 is a candidate
tumor suppressor, whose expression is silenced in colon
cancer [11–13]. SCFAs are effective inhibitors of histone
deacetylases (HDACs), but this process depends on how
effectively these SCFAs enter the epithelial cells [14]. As
SLC5A8 is a high-affinity transporter, its contribution to
the cellular entry of SCFAs is negligible when the luminal
concentrations of SCFAs are in millimolar range as occurs
when dietary fiber intake is optimal. Under these con-
ditions, low-affinity transporters for SCFAs such as the
monocarboxylate transporter MCT1 (SLC16A1) are pri-
marily responsible for the entry of SCFAs into colonic
epithelium [13]. Luminal concentrations of SCFAs are
decreased when the dietary fiber intake is low; under these
conditions, the high-affinity transporter SLC5A8 becomes
important for the entry of SCFAs into colonic epithelium
[13]. )is has been demonstrated convincingly using
Slc5a8-null mice. With optimal fiber content in diet, there
is no difference between wild-type mice and Slc5a8-null
mice in the outcome of experimentally induced colitis; but
when the dietary fiber content is low, Slc5a8-null mice
show increased disease severity in experimentally induced
colitis [15].

Previous reports from our lab have shown that micro-
biota influences the expression of Slc5a8 in colon; germ-free
mice have markedly reduced expression of Slc5a8, and
recolonization of the colon with bacteria increases Slc5a8
expression [9]. Similarly, enhancement of colonic bacteria
with the exogenous administration of probiotic strains in
mice enhances Slc5a8 expression [16, 17]. In the present
study, we investigated the relationship between Slc5a8 and
dietary fiber content in terms of the composition of colonic
bacteria and colonic epithelial cell gene expression. )e goal
was to understand at the molecular level why Slc5a8-null
mice are prone to colonic inflammation only under con-
ditions of reduced fiber intake in the diet.

2. Materials and Methods

2.1. Animals. C57BL/6 mice (stock no. 000664) were ob-
tained from Jackson laboratories. Generation of Slc5a8-/-

mice has been described [18], and mice were bred and
maintained in Texas Tech University Health Sciences Center
Laboratory Animal Resource Center (LARC) in accordance
with the guidelines of the Institutional Animal Care Use
Committees. Mice were maintained in the conventional
animal housing with 12 h day-night cycles, with water and
food provided ad libitum, and used between 8–12 weeks of
age.

2.2. Animal Diets. Mice were fed a diet containing dietary
fibers (fiber-containing diet or FC-diet) or a diet without
fibers (fiber-free diet or FF-diet). )ese diets were custom-
produced by Harlan Laboratories (Indianapolis, IN, USA).
)e diets were autoclaved and vacuum-packed by the
manufacturer and kept at 4°C until they are used to feed the
animals. )e diets were provided to the animals ad libitum.

2.3. Feces Collection, Storage, and DNA Extraction. Each
mouse was placed separately in a nonbedded cage for 4 h,
and their fecal pellets were collected. )e fecal pellets were
stored at − 80°C immediately and used for DNA isolation.
Total DNA was isolated from fecal samples using the MoBio
PowerSoil® DNA Isolation Kit (MoBio Laboratories, Inc.,
Carlsbad, CA) according to the manufacturer’s instructions.
)e extracted DNA was stored at − 80°C until library
preparation and metagenomics sequencing were performed.

2.4. Library Preparation and 16S rRNA Gene Sequencing and
Data Analysis. Library preparation and sequencing were
performed at the Center for Biotechnology and Genomics,
Texas Tech University, Lubbock TX using the Illumina 16S-
metagenomics library prep protocol. Paired-end sequencing
was performed on an MiSeq using a 600 cycle reagent
cartridge. )e forward and reverse adapters were trimmed,
samples were demultiplexed, and fastq.gz files were gener-
ated using MiSeq reporter software (MSR) from Illumina.
All the sequence files were uploaded into the NCBI-Se-
quence Read Archive (SRA) and Bio project ID:
PRJNA515739 and used for data analysis. Sequencing files
were used for further analysis with QIME (version 1.8.0),
PEAR software, UCLUST algorithm and PyNast aligner
software [19–22]. Texas Tech University high performance
computational resource, Hrothgar was used to accomplish
this computational data analysis.

2.5. Statistical Analysis of Sequencing Data. QIIME was used
to calculate the species richness and diversity indices
(Shannon, phylogenetic, and Chao1) in order to measure α
diversity within the sample. Pairwise distances between
microbial communities based on phylogenic relatedness of
whole communities were calculated using UniFrac method
(β diversity between samples) [23]. Indicator species analysis
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was performed to determine the indicative species of each
group of samples using “indicspecies” function in R [24].

2.6. Total RNA Extraction. )e colonic mucosal scrapings
from WT and Slc5a8-/- mice fed with the two different diets
were collected. Total RNA was extracted using TRIzol re-
agent (Invitrogen Life Technologies, NY, USA) according to
the manufacturer’s instructions. Total RNA concentrations
were quantified via Qubit® 3.0 Fluorometer and RNA HS
assay kit ()ermo Fisher, MA, USA). Quality of RNA was
checked using RNA ScreenTapes on Agilent 2200 TapStation
(Santa Clara, CA, USA).

2.7. Library Preparations and RNA Sequencing. Total RNA
was used for the cDNA library construction using TruSeq®Stranded mRNA LT kit (Illumina, San Diego, USA) and
epMotion 5075t robot (Eppendorf, Hamburg, Germany).
Library construction produced single-indexed libraries with
a median insert size of ∼300 bp which was validated on an
Agilent 2200 TapeStation instrument using D1000 Screen-
Tapes (Santa Clara, CA, USA). All libraries were quantified
in triplicate using SynergyH1 fluorescent plate reader
(BioTek, Vermont, USA). )e pooled denatured cDNA li-
braries were loaded on a cBot for cluster generation followed
by 2×108 bp paired-end sequencing using HiSeq Rapid kits
with V2 chemistry on an HiSeq 2500 sequencer (Illumina,
San Diego, USA). All the sequence files were uploaded into
the NCBI-Sequence Read Archive (SRA) and Bio project ID:
PRJNA517543 and used for data analysis.

2.8. Bioinformatics. )e quality of the raw reads was
assessed using FastQC software (Babraham Bioinformatics).
Quality filtered reads (both reads 1 and 2) for each animal
from each tissue sample were mapped to the mouse genome
using QSeq® version 15.0 software (DNASTAR, Madison,
WI, USA) for differential gene expression analysis using
RPKM normalization. Differential gene expression analysis
was performed by comparing grouped experimental samples
to their corresponding grouped control samples. Genes were
categorized as differentially expressed and statistically sig-
nificant if they met 95% confidence (Student’s t-test and the
Benjamini–Hochberg false discovery rate method) and a
cutoff of 2-fold change. Using standard setting with du-
plicates resolved, the gene list files were uploaded into In-
genuity Pathway Analysis (IPA) tool core analysis. IPA
analysis comprised ascertaining canonical pathways, up-
stream regulators, and diseases and functions.

2.9. Western Blot. Colon mucosal scrapings were collected
fromwild-type and Slc5a8-/- mice and homogenized in RIPA
buffer ()ermo Scientific, USA) and supplemented with a
proteases cocktail. Proteins were run on to SDS/PAGE gels
and then transferred on to PVDF membranes. Membranes
were blocked with bovine serum albumin, incubated with
primary antibody at 4°C overnight, followed by treatment
with appropriate secondary antibody conjugated to horse-
radish peroxidase (Bio-rad, USA). )e antigen/antibody

reaction was detected by the Enhanced Chemiluminescence
Western blotting substrate ()ermo Scientific, USA). Pri-
mary antibodies were obtained from the following sources:
p-Akt (cell signaling #4060), Akt (cell signaling #4691), HIF-
1α (Novous #NB100-479), and β-actin (Santa Cruz #47778).

2.10. Statistical Analysis. )e data shown are representative
results of the means± standard error of mean. Statistical
significance was calculated using the Student’s t-test with
two-tailed analysis, unless stated otherwise. Differences were
judged to be statistically significant when the P value was
<0.05.

3. Results

3.1. Body Weight Change. To understand the association
between gut microbes and influence of dietary fiber with the
function of Slc5a8, we fed age- and gender-matched wild-
type and Slc5a8-null mice with fiber-containing diet (FC-
diet) or fiber-free diet (FF-diet). )e difference between FC-
diet and FF-diet is the presence or absence of 5% cellulose,
respectively, as a source of dietary fiber. )e composition of
the two diets is shown Figure 1. )e diets were provided to
the animals ad libitum. To evaluate the role of diet on mouse
health, we monitored body weight over the entire period of
the experiment; there was no significant difference in the
body weight (data not shown). At the end of the experiment
when the mice were sacrificed, we measured colon length,
which alters under conditions of active inflammation; again,
we did not see any significant difference among the different
experimental groups (data not shown).

3.2. Microbial Diversity and Bacterial Abundance. To eval-
uate the influence of dietary fiber and the presence or ab-
sence of Slc5a8 on microbiota composition in colon, we
collected feces from wild-type and Slc5a8-/- mice fed either
the FC-diet or the FF-diet. We performed sequencing of 16S
rRNA gene using DNA samples isolated from these fecal
samples. )e richness and diversity of microbiota were
assessed by alpha and beta diversity analysis (Figure 2(a)).
We observed increased richness in wild-type mice fed the
FF-diet when compared with wild-type mice fed the FC-diet.
Such difference was not observed in Slc5a8-null mice when
fed the two diets. More importantly, we found an interesting
difference between wild-type mice and Slc5a8-null mice in
bacterial richness when fed the FF-diet but not when fed the
FC-diet. )e richness was less in Slc5a8-null mice compared
with wild-type mice. )e observed changes in bacterial
richness with regard to the two different diets and the two
different genotypes of the mice were similar irrespective of
whether the analysis was done using the ACE index or the
Fisher’s alpha index.We then analyzed the bacterial diversity
among the four groups using two different methods
(Simpson index and Shannon index) (Figure 2(b)). De-
creased diversity of microbiota was observed in wild-type
mice fed the FF-diet, null mice fed the FC-diet, and null mice
fed the FF-diet compared with wild-type mice fed the FC-
diet. More importantly, there was a decreased diversity in the
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null mice than in the wild-type mice irrespective of the fiber
content in the diet. Interestingly, the absence of fiber in the
diet decreased the bacterial diversity in the wild-type mice,
but this was not the case in the null mice. )e bacterial
diversity remained the same in the null mice irrespective of
whether or not the diet contained fiber.

To compare the microbiome community structure of the
fecal samples across groups regarding their phylogeny, we
used three-dimensional Principal Coordinate Analysis
(PCoA) of unweighted UniFrac distances (which considers
only OTU presence and absence, Figure 2(c)). )e micro-
biota samples neatly fell into four clusters based on the
mouse genotype and dietary fiber condition. )ese results
suggest that there is a difference in the microbiota com-
munity with dietary fiber content, and that Slc5a8 genotype
(i.e., presence or absence) induces further changes in the
microbiota.

We then assessed the role of dietary fiber and the Slc5a8
genotype on the relative abundance of microbiota at
different taxonomic levels. Decreased abundance of Bac-
teroidetes was observed in wild-type mice fed the FF-diet
and in Slc5a8-null mice fed either the FC-diet or the FF-
diet compared with wild-type mice fed the FC-diet
(Figure 3(a)). A similar trend was observed in the abun-
dance of Firmicutes. )e presence or absence of fiber in the
diet also altered the abundance of Verrucomicrobia sig-
nificantly. Our phylum analysis clearly showed that Ver-
rucomicrobia abundance was inversely proportional to
dietary fiber content; the abundance was greater in wild-
type mice fed the FF-diet than in wild-type mice fed the
FC-diet. More importantly, the presence or absence of
Slc5a8 impacted specifically on the abundance of this
phylum. )ere was an increased abundance of Verruco-
microbia in the null mice irrespective of the presence or

absence of fiber in the diet compared with wild-type mice
when fed the corresponding diet.

At the class level, FF-diet increased in both wild-type mice
and in Slc5a8-null mice, the abundance of Coriobacteriia,
which belongs to the phylum Actinobacteria and Bacilli, which
belongs to the phylum Firmicutes when compared with wild-
type mice fed the FC-diet (Figure 3(b)). Interestingly, Slc5a8-/-
mice fed the FF-diet also showed significantly increased
Coriobacteriia when compared with Slc5a8-/- mice fed the FC-
diet (Figure 3(b)). )e abundance of Clostridia, another class
within the Firmicutes phylum, showed a decrease in the feces of
mice fed the FF-diet when compared withmice fed the FC-diet;
this was true in bothwild-typemice and in the Slc5a8-null mice
(Figure 3(b)). )e abundance of Bacteroidia, which belongs to
the Bacteroidetes phylum, decreased in wild-type mice when
fed the FF-diet instead of the FC-diet, but the decrease was
evident in Slc5a8-null mice independent of the fiber content in
the diet when compared with FC-fed wild-type mice.

We performed indicator species analysis (ISA) to monitor
bacterial species that are unique within a given Slc5a8 ge-
notype and within a given dietary fiber condition. )is
analysis determines bacterial OTUs that are significantly
associated with a given condition (P< 0.05) based on fidelity
(exclusivity) and relative abundance of the organism. First, we
compared wild-type mice fed the FC-diet with wild-type mice
fed the FF-diet (Table 1). Table 2 lists bacterial species that are
unique to Slc5a8-/- mice fed the FC-diet when compared with
wild-type mice fed the FC-diet. Interestingly, the genera
Akkermansia (phylum Verrucomicrobia) and AF12 (phylum
Bacteroidetes) were enriched in Slc5a8-/- mice independent of
dietary fiber content; in wild-type mice, the increase in the
abundance of these genera was evident in animals fed the FF-
diet compared with animals fed the FC-diet. Desulfovibrio,
which belongs to the Proteobacteria phylum and also a

Whey protein isolate
Dextrose, monohydrate
Maltodextrin

Soybean oil
Cellulose

(a)

Whey protein isolate
Dextrose, monohydrate
Maltodextrin

Soybean oil
Cellulose

(b)

Figure 1: Components of (a) fiber-containing diet (FC-diet) and (b) fiber-free diet (FF-diet).
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Figure 2: α and β diversities in fecal microbiota of WTand Slc5a8-/- (KO) mice fed with fiber-containing diet (FC-diet) and fiber-free diet
(FF-diet). Microbial richness was analyzed based on the ACE index and Fisher alpha index (a); Simpson index and Shannon index (b);
unweighted Principal Coordinate Analysis-UniFrac metrics (c). )e Student’s two-tailed t-test was used to calculate statistical significance
(n� 6 mice/group). ∗, P< 0.05 when compared between WTmice fed the FC-diet and WTmice fed the FF-diet; $, P< 0.05 when compared
betweenWTmice fed the FC-diet and KOmice fed the FC-diet; @, P< 0.05 when compared betweenWTmice fed the FF-diet and KOmice
fed the FF-diet.
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well-known colitogenic bacterial genus, was present only in
Slc5a8-/- mice fed the FF-diet (Table 3).

3.3. Transcriptome Profile. To identify the global tran-
scriptomic profiles associated with Slc5a8 genotype and the
dietary fiber content, we performed RNAseq on colonic
mucosal scrapings from the wild-type mice and Slc5a8-null
mice fed either the FC-diet or the FF-diet. First, we identified
differentially expressed genes (DEGs) using the cutoff set to a
fold change of 2 and a P value of <0.05. In wild-type mice,
547 DEGs were identified between FC-diet and the FF-diet

(434 upregulated genes and 113 downregulated genes). In
Slc5a8-/- mice, 143 DEGs were identified between FC-diet
and the FF-diet (99 upregulated genes and 44 downregulated
genes). Comparison between the two genotypes of Slc5a8
when fed the same diet showed 436 DEGs with the FC-diet
and 267 DEGs with the FF-diet.

We used Ingenuity Pathway Analysis (IPA) software to
identify significant molecular pathways and functions which
are different among the four groups. As the fiber content in
the diet and the SCFA transporter Slc5a8 are principally
associated with colonic inflammation, we focused on colitis
while analyzing the transcriptome profiles by IPA.We found
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Figure 3: Taxonomic level difference in the phylum and class level. Phylum and class level abundance is expressed as % of fecal microbiota in
the experimental group. Data represent only the predominant phyla and the class whose abundance shows the most significant difference
(n� 6).

Table 1: Indicative Species Analysis of wild-type mice fed with FF-
diet when compared with FC-fed wild-type mice.

WT-FF

Phyla Family Genera P

value
Actinobacteria Bifidobacteriaceae Bifidobacterium 0.005
Actinobacteria Coriobacteriaceae Collinsella 0.013
Bacteroidetes Porphyromoadaceae Parabacteroides 0.003
Bacteroidetes Rikenellaceae AF12 0.003
Firmicutes Streptococcaceae Streptococcus 0.003
Firmicutes Erysipelotrichaceae Allobaculum 0.003
Firmicutes Erysipelotrichaceae Clostridium 0.003
Firmicutes Erysipelotrichaceae Coprobacillus 0.003
Verrucomicrobia Verrucomicrobiaceae Akkermansia 0.003

Table 2: Indicative Species Analysis of Slc5a8-/- mice fed FC-diet
when compared with FC-fed wild-type mice.

Slc5a8-/--FC

Phyla Family Genera P

value
Actinobacteria Bifidobacteriaceae Bifidobacterium 0.005
Actinobacteria Coriobacteriaceae Collinsella 0.013
Bacteroidetes Porphyromoadaceae Parabacteroides 0.003
Bacteroidetes Rikenellaceae AF12 0.003
Firmicutes Erysipelotrichaceae Allobaculum 0.003
Firmicutes Erysipelotrichaceae Clostridium 0.005
Firmicutes Erysipelotrichaceae Coprobacillus 0.003
Firmicutes Streptococcaceae Streptococcus 0.005
Verrucomicrobia Verrucomicrobiaceae Akkermansia 0.003
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that deletion of Slc5a8 itself causes alterations of gene ex-
pression that is conducive for colitis, and deficiency of fiber
in the diet exacerbates this phenomenon (Figures 4 and 5).
To confirm the RNAseq data, we performed qRT-PCR for
some of the differentially expressed genes such as Ccl5, Tlr2,
Tdg, iNos, and Mmp13 (Figure 6). We observed decreased
expression of Ccl5 and Tlr2 in Slc5a8-/- mice than in wild-
type mice irrespective of the dietary fiber content. Mmp13
gene expression also showed a similar trend. )e expression
of Tdg increased in both genotypes of mice irrespective of the
fiber content of the diet. Interestingly, we found differential
effects of the dietary fiber on iNos expression in wild-type
mice and Slc5a8-null mice dictated by the fiber content in
the diet. When fed the FC-diet, iNos expression increased in
Slc5a8-/- mice compared with wild-type mice, but the effect
was opposite in the case of FF-diet. When fed this fiber-free
diet, the Slc5a8-null mice showed decreased expression of
iNos compared to wild-type mice.

3.4. Epithelial Barrier Layer Homeostasis and Repair. To
further analyze the mucous layer integrity, we examined the
mucous building blocks Muc2a, mucosal repair factor
Trefoil factor (Tff1), and Kruppel-like factor (Klf3) essential
for barrier function. We observed significant down-
regulation of mucosal repair factor Tff1 in the absence of
dietary fiber in wild-type mice and in Slc5a8-null mice. More
importantly, deletion of Slc5a8 resulted in decreased ex-
pression of Tff1 in both dietary conditions (Figure 7). In
contrast, expression of Tff3 decreased only in Slc5a8-null
mice, that too only when fed the FF- diet. )e expression of
the other two genes (Muc2 and Klf3) did not change in any
of the four groups. TFF3 is transcriptionally activated by
PI3K/Akt signaling pathway. )erefore, we performed
western blot analysis with mucosal scrapings from wild-type
mice and Slc5a8-/- mice fed either the FC-diet or the FF-diet
(Figure 8). Akt phosphorylation decreased in Slc5a8-/- mice
compared with wild-type mice irrespective of the fiber
content in the diet (Figure 8(a)). In wild-type mice, dietary
fiber did not alter Akt phosphorylation. RNAseq analysis
showed differential expression of Ccl5, iNos, and Mmp13.
Hypoxia inducible factor-1α stabilization and activation
induces the expression of these genes. )erefore, we mon-
itored the levels of HIF-1α by western blot in the mucosal

scrapings from the four groups of mice. HIF-1α levels de-
creased both in wild-type mice and in Slc5a8-/- mice fed the
fiber-free diet (Figure 8(b)). With the fiber-containing diet,
HIF-1α levels decreased in Slc5a8-null mice compared with
the wild-type mice.

4. Discussion

4.1. Influence of Dietary Fiber and Slc5a8 on Microbiota.
Diet, gut microbiota, and host genetics are important factors
for healthy living [25] and intestinal epithelium, primarily in
the colon, is the site for interaction between diet, microbiota,
and host [26]. Pathogenesis of IBD is driven by a multi-
factorial process, and one of the widely accepted causative
factors is microbiota dysbiosis (i.e., alterations in the bac-
terial composition). Published reports have shown that
dietary components influence the microbiota, and that
microbiota in turn influences the epithelial barrier integrity
and immunity in the host intestinal tract [27]. )e integrity
of the colonic epithelial barrier is critical for protection
against IBD; it effectively prevents direct interaction between
luminal bacteria and the host immune system, an obligatory
process for successful symbiotic coexistence of the bacteria
and the host. )is does not mean that luminal bacteria do
not communicate with the host immune system; they do but
mostly via chemical messengers which can cross the intact
epithelial barrier from the lumen to reach the immune cells
present in the lamina propria [28–30]. Bacteria generate
several metabolites using dietary fiber and proteins, which
then elicit a broad spectrum of biological effects via acti-
vation of cell-surface receptors and nuclear receptors in
epithelial and immune cells in the host [28–30]. In addition,
some of these metabolites also work on pattern recognition
receptors (PRR) such as toll-like receptors (TLRs) and
nucleotide-binding oligomerization domain-like receptors
(NLRs) in immune cells [27]. )e intestinal epithelial layer
consists of different cell types, including absorptive
enterocytes/colonocytes responsible for nutrient absorption,
secretory epithelial (Paneth and goblet cells) cells secrete
antimicrobial peptides and mucins and hormone-secreting
enteroendocrine cells. Paneth cells, present only in the small
intestine secrete antimicrobial peptides (AMPs), whereas
Goblet cells, a main subtype of intestinal epithelial cells
present in the colon, are involved in the maintenance of
barrier function via secretion of mucins, trefoil factors (Tff),
and AMPs [26]. Mucins serve as a source of carbon and
nitrogen for colonic bacteria when diet is deficient in fiber.

Previous studies from our laboratory have shown that
the Na+-coupled high-affinity monocarboxylate transporter
Slc5a8 functions as a tumor suppressor only when diet is
deficient in fiber [15]. )e current study was undertaken to
investigate the interaction between dietary fiber and Slc5a8
in determining the composition of colonic bacteria and the
gene expression pattern in colonic epithelium to understand
why the biological consequences of Slc5a8 deletion become
apparent only when the diet is deficient in fiber. SLC5A8
functions as a tumor suppressor not only in the colon but
also in a wide variety of tissues [14]. In the colon, the
principal driver of the tumor-suppressive function of this

Table 3: Indicative Species Analysis of Slc5a8-/- mice fed the FF-
diet when compared with Slc5a8-/- mice fed the FC-diet.

Slc5a8-/--FF
Phyla Family Genera P value
Actinobacteria Coriobacteriaceae Collinsella 0.008
Bacteroidetes Bacteroidaceae Bacteroides 0.002
Bacteroidetes Paraprevetellaceae Prevotella 0.002
Firmicutes Staphylococcaceae Staphylococcus 0.033
Firmicutes Erysipelotrichaceae RFN20 0.002
Firmicutes Streptococcaceae Lactococcus 0.002
Firmicutes Lactobacillaceae Lactobacillus 0.002
Firmicutes Enterococcaceae Enterococcus 0.031
Proteobacteria Alcaligenaceae Sutterella 0.014
Proteobacteria Desulfovibrionaceae Desulfovibrio 0.036
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Pathway Analysis (IPA).
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Figure 4: (a) Canonical pathway; (b) heat map of the genes related to the colitis signaling pathway in colonic epithelial cells obtained from
wild-type (WT) and Slc5a8-null (KO) mice fed the fiber-containing diet (FC-diet). )e significant pathway and DEGs were obtained via
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transporter is to mediate the Na+-coupled concentrative
accumulation of the bacterial fermentation product propi-
onates and butyrate in colonic epithelial cells, which are
potent inhibitors of histone deacetylases. In noncolonic
tissues, the transporter might function in the cellular ac-
cumulation of pyruvate, also an inhibitor of histone
deacetylases [31–33]. )ere is also evidence that SLC5A8
might elicit its tumor-suppressive effects via a transport-
independent mechanism involving interaction with survivin
[34].

In the present study, we examined the influence of dietary
fiber and its synergy with SLC5A8 on microbial composition
in the colonic lumen and on the transcriptome profile of the
colonic epithelium. Our studies clearly show that dietary fiber
influences the composition of colonic bacteria. )is is ex-
pected because different strains of bacteria prefer different
carbohydrates as a carbon source for their metabolism and
fermentation. )erefore, when the diet is deficient in fiber,
some bacterial strains do not proliferate, whereas some others
have a proliferative advantage under these conditions. )is

leads to significant differences in the strain composition of
colonic bacteria.What is surprising, however, is the finding in
the present study that the presence or absence of Slc5a8 in
mouse colon also determines the composition of colonic
microbiome. We found higher enrichment of colitogenic
bacteria Prevotella, Sutterella, and Erysipelotrichaceae and
decreased abundance of Firmicutes Slc5a8-null mice when fed
the fiber-free diet compared to when fed the fiber-containing
diet. In addition, the bacterial strains associated with disease
remission in patients with ulcerative colitis, which include
Staphylococcaceae, Lactobacillaceae, and Coriobacteriaceae,
are also enriched in Slc5a8-null mice. )e increased lactic
acid-producing Bacteria (LAB) during active colitis has been
previously reported [35]. It has also been reported that mice
colonized with Phylum Prevotella were susceptible to ex-
perimental colitis [36]. Hamilton et al. [37] have reported that
increased Akkermansia abundance in colon is associated with
decreased thickness of the mucus layer and also with de-
creased number of mucin-producing goblet cells. Further-
more, Akkermansia spp., Desulfovibrio spp., and phylum
Prevotella have more tendency to bind to inflamed colon
compared to healthy colon [38, 39]. We found in our study
that the mucolytic bacteria Akkermansia are in higher
abundance in Slc5a8-null mice when fed the fiber-free diet.
)is could contribute to the thinning of the protective mu-
cous layer in the colon, thus contributing to an increased risk
of colitis under experimentally induced colonic inflammation.
Erysipelotrichaceae have been associated with inflammatory
diseases and metabolic disorders, both in humans and mice
[40, 41]; this bacterial strain is also present in greater
abundance in Slc5a8-null mice when fed the fiber-free diet.
Similarly, the family of Rikenellaceae, which is also a mucin-
degrading bacteria [42], is present abundantly in Slc5a8-null
mice when fed either the fiber-containing diet or the fiber-free
diet. During active colitis, overgrowth of Bacteroides and
decreased abundance of Firmicutes have been reported [43].
Enterococcus abundance correlated with genetic mouse
models of IBD and carcinoma [44]. )e bacterial genera
Sutterella belonging to the Proteobacteria phylum is known to
possess a proinflammatory characteristic and is capable of
adhering to intestinal epithelial cells [45]. )ese disease-
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associated bacterial genera are present in abundance in
Slc5a8-null mice fed the fiber-free diet. )e observed changes
in bacterial composition in Slc5a8-null mice when fed the
fiber-free diet, reflecting bacterial dysbiosis, and the increased
abundance of disease-causing bacteria in these mice strongly
suggest that the bacterial dysbiosis seen in these mice do
contribute to the increased severity of inflammation in colon
in experimental colitis as observed in our previous study [15].

4.2. Transcriptome Analysis. In the present study, we also
analyzed the transcriptome of colonic epithelium to under-
stand the impact of dietary fiber and Slc5a8 on the gene
expression profile in these cells. Fiber deficiency altered the
colonic mucosal transcriptome towards decreased epithelial
repair and increased inflammation. HIF-1α is important for
mucosal repair, and its signaling cascade has been shown to be
protective against colitis [46]. HIF-1α expression is decreased
in Slc5a8-null mice fed either the fiber-containing diet or the
fiber-free diet. SCFAs generated by bacterial fermentation of
dietary fiber in colonic lumen link Slc5a8 to HIF-1α; these
bacterial metabolites are excellent energy substrates for co-
lonic epithelium and are also known to promote stabilization
of HIF-1α [47]. )e same is true with Akt signaling. )is
pathway protects against colitis, but its activity is decreased in
Slc5a8-null mice independent of fiber content in the diet.

Mucins are building blocks of mucus layer, and Tff1 and
Tff3 are peptides secreted by the goblet cells that facilitate
epithelial restitution and mucosal protection through binding
with mucins [48]. In the present study, we found the ex-
pression of Tff1 and Tff3 to be downregulated in Slc5a8-null
mice when fed the fiber-free diet. )e expression of Tffs is
under the control of Tlr2; we found the expression of Tlr2 to
be suppressed in Slc5a8-null mice irrespective of the dietary
fiber content. )is explains why the expression of Tffs is
decreased in the absence of Slc5a8. Stimulation of Tlr2 by
microbiota increases the Tff3 expression via PI3K/AKT
pathway in mice, whereas this effect is not seen in Tlr2-
knockout mice [49]. Suppression of Tlr2 expression decreases
regulatory immune cells and induces inflammation [50].

4.3.Conclusion. In summary, our studies provide new insight
into the molecular mechanisms that underlie the proin-
flammatory phenotype in colon of Slc5a8-null mice under

conditions of low-fiber diet. )e combination of fiber defi-
ciency and absence of Slc5a8 promote bacterial dysbiosis in
colon that is conducive of a proinflammatory condition. In
addition, the gene expression profile of the colonic epithelium
is altered such that the signaling via HIF-1α and Akt is
suppressed, and the secretion of the mucosal protective
peptides Tffs by the goblet cells is compromised. Collectively,
these changes in the luminal bacteria and in the biology of
colonic epithelial layer promote a proinflammatory milieu,
thus increasing the risk of colonic inflammation in Slc5a8-
null mice when fed a diet deficient in fiber.
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