45 research outputs found

    Synthetic Lethality of Chk1 Inhibition Combined with p53 and/or p21 Loss During a DNA Damage Response in Normal and Tumor Cells

    Get PDF
    Cell cycle checkpoints ensure genome integrity and are frequently compromised in human cancers. A therapeutic strategy being explored takes advantage of checkpoint defects in p53-deficient tumors in order to sensitize them to DNA-damaging agents by eliminating Chk1-mediated checkpoint responses. Using mouse models, we demonstrated that p21 is a key determinant of how cells respond to the combination of DNA damage and Chk1 inhibition (combination therapy) in normal cells as well as in tumors. Loss of p21 sensitized normal cells to the combination therapy much more than did p53 loss and the enhanced lethality was partially blocked by CDK inhibition. In addition, basal pools of p21 (p53 independent) provided p53 null cells with protection from the combination therapy. Our results uncover a novel p53-independent function for p21 in protecting cells from the lethal effects of DNA damage followed by Chk1 inhibition. As p21 levels are low in a significant fraction of colorectal tumors, they are predicted to be particularly sensitive to the combination therapy. Results reported in this study support this prediction

    Serratamolide is a hemolytic factor produced by Serratia marcescens

    Get PDF
    Serratia marcescens is a common contaminant of contact lens cases and lenses. Hemolytic factors of S. marcescens contribute to the virulence of this opportunistic bacterial pathogen. We took advantage of an observed hyper-hemolytic phenotype of crp mutants to investigate mechanisms of hemolysis. A genetic screen revealed that swrW is necessary for the hyper-hemolysis phenotype of crp mutants. The swrW gene is required for biosynthesis of the biosurfactant serratamolide, previously shown to be a broad-spectrum antibiotic and to contribute to swarming motility. Multicopy expression of swrW or mutation of the hexS transcription factor gene, a known inhibitor of swrW expression, led to an increase in hemolysis. Surfactant zones and expression from an swrW-transcriptional reporter were elevated in a crp mutant compared to the wild type. Purified serratamolide was hemolytic to sheep and murine red blood cells and cytotoxic to human airway and corneal limbal epithelial cells in vitro. The swrW gene was found in the majority of contact lens isolates tested. Genetic and biochemical analysis implicate the biosurfactant serratamolide as a hemolysin. This novel hemolysin may contribute to irritation and infections associated with contact lens use. © 2012 Shanks et al

    Enhancement of Both Long-Term Depression Induction and Optokinetic Response Adaptation in Mice Lacking Delphilin

    Get PDF
    In the cerebellum, Delphilin is expressed selectively in Purkinje cells (PCs) and is localized exclusively at parallel fiber (PF) synapses, where it interacts with glutamate receptor (GluR) δ2 that is essential for long-term depression (LTD), motor learning and cerebellar wiring. Delphilin ablation exerted little effect on the synaptic localization of GluRδ2. There were no detectable abnormalities in cerebellar histology, PC cytology and PC synapse formation in contrast to GluRδ2 mutant mice. However, LTD induction was facilitated at PF-PC synapses in Delphilin mutant mice. Intracellular Ca2+ required for the induction of LTD appeared to be reduced in the mutant mice, while Ca2+ influx through voltage-gated Ca2+ channels and metabotropic GluR1-mediated slow synaptic response were similar between wild-type and mutant mice. We further showed that the gain-increase adaptation of the optokinetic response (OKR) was enhanced in the mutant mice. These findings are compatible with the idea that LTD induction at PF-PC synapses is a crucial rate-limiting step in OKR gain-increase adaptation, a simple form of motor learning. As exemplified in this study, enhancing synaptic plasticity at a specific synaptic site of a neural network is a useful approach to understanding the roles of multiple plasticity mechanisms at various cerebellar synapses in motor control and learning

    Phospholipases A1

    Get PDF
    Phospholipase A1 (PLA1) is an enzyme that hydrolyzes phospholipids and produces 2-acyl-lysophospholipids and fatty acids. This lipolytic activity is conserved in a wide range of organisms but is carried out by a diverse set of PLA1 enzymes. Where their function is known, PLA1s have been shown to act as digestive enzymes, possess central roles in membrane maintenance and remodeling, or regulate important cellular mechanisms by the production of various lysophospholipid mediators, such as lysophosphatidylserine and lysophosphatidic acid, which in turn have multiple biological functions

    Emergence and evolution of antimicrobial resistance genes and mutations in Neisseria gonorrhoeae

    No full text
    Background Antimicrobial resistance in Neisseria gonorrhoeae is a global health concern. Strains from two internationally circulating sequence types, ST-7363 and ST-1901, have acquired resistance to third-generation cephalosporins, mainly due to mosaic penA alleles. These two STs were first detected in Japan; however, the timeline, mechanism, and process of emergence and spread of these mosaic penA alleles to other countries remain unknown. Methods We studied the evolution of penA alleles by obtaining the complete genomes from three Japanese ST-1901 clinical isolates harboring mosaic penA allele 34 (penA-34) dating from 2005 and generating a phylogenetic representation of 1075 strains sampled from 35 countries. We also sequenced the genomes of 103 Japanese ST-7363 N. gonorrhoeae isolates from 1996 to 2005 and reconstructed a phylogeny including 88 previously sequenced genomes. Results Based on an estimate of the time-of-emergence of ST-1901 (harboring mosaic penA-34) and ST-7363 (harboring mosaic penA-10), and > 300 additional genome sequences of Japanese strains representing multiple STs isolated in 1996–2015, we suggest that penA-34 in ST-1901 was generated from penA-10 via recombination with another Neisseria species, followed by recombination with a gonococcal strain harboring wildtype penA-1. Following the acquisition of penA-10 in ST-7363, a dominant sub-lineage rapidly acquired fluoroquinolone resistance mutations at GyrA 95 and ParC 87-88, by independent mutations rather than horizontal gene transfer. Data in the literature suggest that the emergence of these resistance determinants may reflect selection from the standard treatment regimens in Japan at that time. Conclusions Our findings highlight how antibiotic use and recombination across and within Neisseria species intersect in driving the emergence and spread of drug-resistant gonorrhea

    Fitness cost and benefit of antimicrobial resistance in Neisseria gonorrhoeae: Multidisciplinary approaches are needed

    Get PDF
    In a Perspective on the research article by Didelot and colleagues, Magnus Unemo and Christian Althaus discuss the value of modelling studies to inform antimicrobial resistance management and the limitations of the current evidence base informing such models
    corecore