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Abstract

Serratia marcescens is a common contaminant of contact lens cases and lenses. Hemolytic factors of S. marcescens
contribute to the virulence of this opportunistic bacterial pathogen. We took advantage of an observed hyper-hemolytic
phenotype of crp mutants to investigate mechanisms of hemolysis. A genetic screen revealed that swrW is necessary for the
hyper-hemolysis phenotype of crp mutants. The swrW gene is required for biosynthesis of the biosurfactant serratamolide,
previously shown to be a broad-spectrum antibiotic and to contribute to swarming motility. Multicopy expression of swrW
or mutation of the hexS transcription factor gene, a known inhibitor of swrW expression, led to an increase in hemolysis.
Surfactant zones and expression from an swrW-transcriptional reporter were elevated in a crp mutant compared to the wild
type. Purified serratamolide was hemolytic to sheep and murine red blood cells and cytotoxic to human airway and corneal
limbal epithelial cells in vitro. The swrW gene was found in the majority of contact lens isolates tested. Genetic and
biochemical analysis implicate the biosurfactant serratamolide as a hemolysin. This novel hemolysin may contribute to
irritation and infections associated with contact lens use.
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Introduction

Serratia marcescens is a nosocomial pathogen [1,2,3], a common

contaminant of contact lens cases and is associated with a number

of ocular conditions including keratitis, conjunctivitis, and contact

lens acute red eye (CLARE) [4]. Hemolysins are important

virulence factors for a wide range of Gram-negative and Gram-

positive organisms [5,6,7,8,9]. Known S. marcescens hemolytic

exoenzymes are ShlA and PhlA. ShlA is a key virulence factor and

a pore-forming hemolysin [10,11], whereas PhlA is phospholipase,

one of whose cleavage products is lysophospholipid, a surfactact

that can lyse red blood cells [12].

Regulators of the shlA hemolysin gene include the FlhDC

flagellar biosynthesis regulator and RssAB, a two component

transcriptional regulator [11]. RssAB is a negative regulator of

flhDC expression, whereas FlhDC is a positive regulator of the shlA

hemolysin operon, shlBA [11]. It was also shown that the cyclic

nucleotide cAMP, the adenylate cyclase (CyaA) that generates

cAMP, and the cAMP-receptor protein transcription factor (CRP)

cAMP-CRP positively regulate FlhDC [13,14]. The phlA gene is

also directly regulated by FlhDC and catabolite repression [15,16].

Therefore, it would be predicted that crp mutants should have

reduced hemolytic activity through a reduction of both shlA and

phlA expression. Unexpectedly, we observed that crp mutants

exhibited increased levels of hemolytic activity, suggesting another

mechanism of hemolysis. Here we used a genetic approach to gain

insight into the mechanism of hemolysis exhibited by crp mutants.

Genetic and biochemical analysis in this study support the model

that the biosurfactant serratamolide is a hemolysin.

Results

Mutations in crp and cyaA Lead to an Increase in
Secreted Hemolytic Activity that is Independent of
known Hemolytic Agents ShlA and PhlA

Previously cyaA and crp null mutants were characterized for

exhibiting elevated fimbriae and prodigiosin production [17].

Here we describe a novel hemolysis phenotype for these mutants.

The cyaA and crp mutant strains exhibited dramatically increased

zones of hemolysis on blood agar plates compared to the parental,

wild-type (WT) strain CMS376 [18], that produces small zones of

hemolysis after several days of incubation at 30uC (Fig 1A). The

hyper-hemolytic phenotype could be reversed by returning the

wild-type cyaA and crp genes, respectively, on a multicopy plasmid

(Figure 1B). From this point onward, we focused on crp mutants,

for simplicity.

We tested whether S. marcescens exoenzymes, ShlA and PhlA,

were required for increased extracellular hemolysis produced by

crp mutants. If one of these enzymes is required for the increased
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hemolysis seen in crp mutants, then mutation of shlA or phlA should

eliminate the hyper-hemolysis phenotype of the crp mutants.

However, disruption of the shlA and phlA genes did not decrease

the large hemolytic zones of crp mutant, suggesting that another

hemolysis-promoting factor was involved (Fig 1C). Integration of a

similar plasmid at fimC was used as a plasmid integration control,

and had no impact on hemolysis (Fig 1C).

A potential hemolytic role for serralysin and prodigiosin, a

cytotoxic protease [19–20] and membrane-associated pigment

respectively, were similarly disproved, as crp prtS and crp pigB

double mutants still exhibit high levels of hemolysis (data not

shown).

Suppressor Analysis of the crp Hyper-hemolysis
Phenotype Implicates Serrawettin as a Hemolytic Factor

To determine the mechanism of hyper-hemolysis, a suppressor

analysis approach was taken using random transposon mutagen-

esis [18]. Multiple mutations that inhibited secreted hemolysis

production were identified in a crp mutant background (Fig 2A).

The transposon insertion sites from these hemolysis deficient

isolates were scattered along the length of the swrW gene (base

pair 821, 831, 1396, 2585, and 3078). Strikingly, mutation of the

swrW gene led to an unreported metallic gold color on the

surface of colonies (Fig. 2B). In Figure 2B the image is

illuminated from the top to depict the golden coloration, whereas

the rest of the images of blood agar plates are illuminated from

below to exhibit the zones of hemolysis. The swrW gene was

previously implicated in production of serratamolide, a dilactone

biosurfactant with antimicrobial activity, also known as serra-

wettin W1 [21,22,23]. Serratamolide was previously shown to be

required for surface swarming motility of some strains of S.

marcescens [24]. Other surface wetting agents made by S. marcescens

are the chemically distinct serrawettin W2 and W3, which are

both larger cyclic-peptides, composed of five amino acids and a

single acyl side chain [24,25,26].

Zones of surfactant were visible on top of agar plates

surrounding colonies. We measured this zone and found that it

was significantly larger (p,0.05) around crp mutants

(9.062.0 mm) compared to the WT (2.260.9 mm) (Fig 2C).

Mutation of the swrW gene in the WT and crp background

completely eliminated this zone (Fig 2C). These data suggest that

the surfactant zone is serratamolide and that crp mutants produce

more of it.

To confirm the above observations, we directly mutagenized the

swrW gene. An internal fragment of swrW was cloned into suicide-

Figure 1. Hyper-hemolysis phenotype of crp mutants and
genetic analysis. A. S. marcescens with mutations in cyaA or crp
exhibit a hyper-hemolysis phenotype compared to the isogenic WT
strain on TSA agar with 5% sheep red blood cells at 48 hours. B.
Complementation of cyaA and crp hyper-hemolysis phenotypes with
wild-type copies of the respective genes on multicopy plasmids
(pcyaA = pMQ157, pcrp = pMQ166). Asterisks indicate significantly larger
zones (72h) than the WT (p,0.05, ANOVA with Tukey’s post-test). C.
Double mutant hemolysis phenotypes show that expected hemolysin
genes, phlA and shlA are not required for the crp mutant phenotype.
The swrW gene is required, and a control for insertion mutagenesis
(fimC) is included.
doi:10.1371/journal.pone.0036398.g001

Figure 2. Isolation of swrW and its role in surfactant production
and hemolysis. A. Sample genetic screen plate shows crp mutants
with random transposon insertions. The white arrow indicates a colony
deficient in secreted hemolysis production with a transposon insertion
that mapped to the swrW gene. This image is illuminated from the back,
so that the gold surface coloration is not apparent. B. Surface coloration
of crp swrW double mutants is metallic gold compared to the red-
orange color of the crp mutant. C. Surfactant zones (mm) measured
from the colony to the maximum extent of the surfactant zone
(n$4 per genotype). Asterisk represents a statistically significant
increase in surfactant zone compared to the WT (p,0.05) by ANOVA
with Tukey’s post-test. D. Mutation of swrW reduced or eliminated the
ability of laboratory strain Nima and three of five clinical keratitis
isolates to make zones of hemolysis on blood agar plates. Represen-
tative images from reproducible experiments are shown.
doi:10.1371/journal.pone.0036398.g002

New Serratia marcescens Hemolysin
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promoter probe plasmid, pStvZ3, and introduced into WT and crp

mutant strains by conjugation, as previously described [14]. The

swrW::pStvZ3 and crp swrW::pStvZ3 mutant strains did not

produce zones of surfactant (Fig 2C) or hemolysis (Fig 3C, and

data not shown). Mutation of swrW in the laboratory strain Nima

and a pigmented clinical isolate K904 led to a similar metallic gold

colony color and deficiency in hemolysis on blood agar plates,

indicating that the observed phenotypes are not restricted to the

CMS376 laboratory strain (Fig 2D and data not shown).

If swrW expression positively impacts hemolysis, then a mutant

strain with elevated levels of swrW expression would be expected to

be more hemolytic. It has been previously reported that the LysR-

family transcription factor, HexS, directly inhibits transcription of

swrW [27]. We mutated the hexS gene to test whether it would

confer a hyper-hemolysis phenotype, and found that hexS mutants

exhibited elevated hemolytic zones similar to the crp mutant

(Fig 3A). A hexS swrW double mutant was non-hemolytic,

indicating that the hyper-hemolytic phenotype of hexS mutants

depends upon swrW (Fig 3A). As with the crp mutant, hexS mutants

exhibited significantly larger (p,0.05) surface surfactant zones

(13.461.1 mm) than the WT, whereas the hexS swrW mutant

exhibited no surfactant zones (Fig 2C).

Consistent with serratamalide promoting swarming motility, we

tested whether hexS mutants would produce larger zones of

swarming. Whereas, the WT strain is competent at swarming, the

DhexS mutant swarmed earlier and to a greater extent (Figure 3A

and data not shown). This swarming phenotype was eliminated in

the hexS swrW double mutant indicating that the hexS hyper-

swarming phenotype is serratamolide dependent (Figure 3A).

To test the prediction that swrW is more highly expressed in a

crp mutant background, the swrW promoter (PswrW) was cloned in

front of the tdtomato reporter gene on a pBBR1-based plasmid

(Fig 3B). This plasmid was placed in WT and crp mutant strains

and fluorescence was measured as a function of culture density.

We observed elevated levels of red-fluorescence in the crp mutant

compared to the WT strain. Strains bearing a control plasmid

without tdtomato exhibited negligible fluorescence (data not

shown). A similar result was observed with semi-quantitative

Figure 3. Genetic evidence that serratamolide mediates hemolysis. A. Hemolysis and swarming by a mutant known to have elevated
serratamolide production (hexS) is increased, and these phenotypes require SwrW. B. Elevated expression of a swrW promoter reporter in the crp
mutant. Top, expression measured using a plasmid based-tdtomato reporter construct at t = 20 hrs. Asterisk indicates statistical significance (p,0.05)
by the Student’s T-test. A representative experiment is shown (n = 4). Error bars indicate one standard deviation. Bottom, semi-quantitative RT-PCR
analysis of RNA from WT and Dcrp mutant strains measured relative expression of swrW and internal standard 16S RNA from stationary phase cultures
(OD600 = ,3.5). C. Arabinose-inducible expression of the swrW gene in an swrW transposon mutant strain restores hemolysis. D. Swarming motility
defect of the swrW mutant is restored by induced expression of the swrW gene.
doi:10.1371/journal.pone.0036398.g003
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RT-PCR analysis of the WT and Dcrp mutant, where swrW

transcript was more abundant in Dcrp mutant RNA preparations

relative to those from the WT (Figure 3B). These analyses are

consistent with a model where cAMP-CRP negatively regulates

swrW gene expression in a direct or indirect manner.

Complementation of the swrW Mutant Hemolysis and
Swarming Phenotypes

Because the swrW gene is not present in the sequenced Db11

strain of S. marcescens, we do not know its genetic context, so it is

possible that some of the mutant phenotypes are due to polar

effects on adjacent genes. To ensure that the swrW mutations were

responsible for the mutant phenotypes, we cloned the full-length

swrW gene and placed it under transcriptional control of the E. coli

PBAD promoter in vector pMQ125 [28] to generate the pMQ367

plasmid. The swrW::pStvZ3 mutant bearing the PBAD -swrW

plasmid was rescued with respect to swarming motility and

exhibited a hyper-hemolysis phenotype when L-arabinose was

supplemented in the medium to induce swrW expression, but not

in medium without L-arabinose (Fig 3C–D). As expected, the

swrW::pStvZ3 mutant bearing the empty vector, pMQ125, did not

swarm or exhibit zones of hemolysis even with L-arabinose

induction (Fig 3C–D). As a control for the effect of L-arabinose on

hemolysis and swarming in general, it was also determined that L-

arabinose did not restore swarming or hemolysis to the swrW

mutant without the PBAD 2swrW construct (data not shown).

These data indicate that mutation of swrW rather than a polar

effect on an adjacent gene or another mutation is responsible for

the swrW mutant phenotypes.

Serratamolide can act as a Hemolysin
Serratamolide, a cyclic and aliphatic aminolipid [21,22]

(Fig 4A), was purified to verify its role as a hemolysin.

Comparative profiling of secreted metabolites by the S. marcescens

WT, and the swrW mutant strain with both the empty vector and

expressing swrW from pswrW (pMQ367), using HPLC and LC-

MS, clearly indicated that the key difference lies at a metabolite

fraction with m/z at 515.5 that corresponds to serratamolide

(Fig 4B and data not shown). To unequivocally assign its molecular

identity, we isolated the corresponding fraction by preparative

HPLC and confirmed its structural identity by HR-MS and NMR

analysis. All spectral data were in accordance with previous reports

on serratamolide [29] (data not shown). Furthermore, the purified

serratamolide was able to restore swarming activity to an swrW

mutant strain, providing biological evidence that the purified

compound is serratamolide (Fig 4C).

Purified serratamolide (1 mg/ml) placed in wells in blood agar

plates created clear zones of hemolysis, unlike the DMSO mock

control (Fig 5A). In addition to rabbit erythrocytes, we observed

that serratamolide at a concentration of 20.8 mg/ml completely

lysed mouse erythrocytes in solution in less than 10 seconds

(Fig 5B).

To test whether the cytotoxic effect of serratamolide is specific

to red blood cells, we tested whether serratamolide reduced the

viability to immortalized human airway epithelial cell (A549) and

human corneal limbal epithelial cell (HCLE) monolayers using a

fluorescent viability dye. We observed a dose-dependent cytotoxic

effect at a concentration above 12.5 mg/ml (Fig 5C). At the

maximum serratamolide concentration of 50 mg/ml the fluores-

cent viability value of HCLE cells was 18216432, significantly less

than 104836232 for mock treated cells (p,0.05, Student’s T-test),

and similar to 89765 for detergent lysed cell layers. Similar,

significant results were observed for A549 cells (Fig 5C). Fluores-

cent values for serratamolide treated cells can be compared to

those controls values to calculate a % cytotoxicity metric.

Serratamolide at 50 mg/ml caused 88.062.5% cytotoxicity to

A549 lung cells and 95.464.0% cytotoxicity to HCLE ocular cells,

signifying that serratamolide treatment is toxic to human epithelial

cell lines.

Contact Lens Associated Isolates are More Likely to have
swrW than Keratitis Isolates

We tested a library of clinical isolates from the Charles T.

Campbell laboratory of Ophthalmic Microbiology from keratitis

patients for the presence of the swrW gene. PCR was used to probe

for the presence of the swrW gene in the chromosome of these

strains. Staphylococcus aureus chromosomal DNA was used as a

negative control, and the S. marcescens oxyR gene was used as a

positive PCR target to ensure DNA quality. Out of all 63 isolates,

a total of 22 (34.5%) exhibited PCR amplicons consistent with the

swrW gene.

Of the swrW positive clinical isolates, 9 out of 22 (40.1%) tested

positive for hemolysis on blood agar plates. To test whether their

hemolytic phenotypes were swrW dependent, the swrW gene was

mutated in five of the clinical isolates. Mutation of swrW in the five

different clinical isolates conferred a loss of swarming motility (data

not shown), and three of these five also became deficient in the

ability to create zones of hemolysis on blood agar plates (Fig 2D).

Discussion

The data presented here indicate that the bio-surfactant

serratamolide can act as a novel S. marcescens hemolysin, and that

the non-ribosomal peptide synthetase SwrW is necessary for

hemolysis in some clinical and laboratory strains. This conclusion

is based upon the genetic data that hemolysis is eliminated in swrW

mutants and elevated in crp and hexS mutants that over-express

swrW. Biochemical data indicate that purified serratamolide is

sufficient to lyse red blood cells and damage epithelial cells in vitro.

Figure 4. Serratamolide purification and verification of bio-
logical activity. A. Structure of serratamolide. B. HPLC trace of spent
supernatants from a swrW mutant with either an empty vector
(swrW+vector) or a swrW expression plasmid (swrW+pswrW). The
expected peak for serratamolide is indicated by an arrow. C. Swarming
motility of an swrW mutant treated with DMSO or purified serratamo-
lide. This shows that the purified compound restores swarming motility
as expected.
doi:10.1371/journal.pone.0036398.g004
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Genetic data suggests that serratamolide production is regulated

by cAMP-CRP in strain CMS376, namely that surfactant zones

are increased in a crp mutant and hemolysis is increased in mutant

strains with altered ability to respond to or make cAMP (crp and

cyaA). Since the cAMP-CRP pathway is well known to regulate

genes in response to the nutritional environment of the cell, this

may indicate that serratamolide plays a role in a bacterium’s

ability to acquire or compete for nutrients. Consistent with the role

of serratamolide in competition, it has been shown that

serratamolide has antimicrobial activity against both prokaryotes

and fungi [22,29], and that swarming motility, which requires

biosurfactants such as serratamolide, confers resistance to antibi-

otics [30]. Another role for serratamolide was suggested by Barr-

Ness and colleagues [31]. They showed that mutant strains

deficient in serratamolide had reduced surface hydrophobicity,

and the authors suggested that the highly hydrophobic surface of

S. marcescencs contributes to its dispersal in the environment and

virulence.

Lipopeptide surfactants, such as surfactin from Bacillus species

and syringomycins from Pseudomonas species can act as hemolysins

[32,33,34,35]. Serramic acid, another S. marcescens product was

shown to be hemolytic to human and horse red blood cells, but

only poorly hemolytic to bovine and sheep red blood cells [36].

This same study tested serratamolide for hemolytic activity against

human red blood cells, and the result was negative. The

differences between this current study and the previously described

study, in which serratamolide was tested for hemolysis [36], may

be due to experimental differences, in that the previous authors

delivered serratamolide using liposomes composed of several

phospholipids, rather than serratamolide alone. Furthermore, the

previous study tested serratamolide against human red blood cells

but not sheep or murine red blood cells; it is possible that

differences in membrane phospholipid composition or surface

proteins may result in differential hemolytic activity against red

blood cells from different species, as has been shown before for

PhlA [12].

Miyazaki and colleagues showed that serratamolide provided

protection to S. marcescens against polymorphonuclear leukocyte

(PMN) phagocytosis [37]. This is of particular interest because

PMNs are the primary leukocyte involved in clearing bacteria

corneal infections [38,39,40]. Interestingly, it was shown that

Staphylococcus aureus cells coated with serratamolide were also

protected from PMN phagocytosis [37]. This leads us to speculate

that the presence of S. marcescens-derived serratamolide in contact

lens cases or on lenses may better enable other pathogenic bacteria

to establish ocular infections.

It was noted that swrW was found in ,35% of the tested ocular

clinical isolates, and 40% of the swrW containing isolates were

hemolysis positive on blood agar plates, suggesting that hemolytic

strains express swrW sufficiently to produce hemolysis. In support

of this premise, mutation of swrW in three out of five hemolysis

positive strains severely reduced or eliminated hemolysis zones on

blood agar plates. Of the swrW negative strains, 42% were

hemolysis positive, indicating that other mechanisms of hemolysis

are present in ocular clinical isolates. Another gene, swrA [26],

present in some strains of S. marcescens is necessary for production

of serrawettin W2, may account for the hemolysis positive

phenotype of swrW negative strains. There is genetic evidence

that the swrA-dependent product serrawettin W2, a structurally

distinct surfactant, can act as a hemolytic agent [41]. Serrawettin

W2, consisting of five amino acids with a single acyl chain [25], is

detected by Caenorhabditis elegans as a chemical signal to avoid S.

marcescens colonies [41]. Transposon mutation of the swrA gene, in

strain Db10, led to the loss of hemolysis zones on blood agar plates

that was correlated with the loss of serrawettin W2 [41]. Whereas

the hemolysis and cytotoxicity data presented here suggest that

serratamolide may contribute to bacterial infections, the absence

of the swrW gene in many pathogenic and contact lens associated

strains indicate that SwrW is not a requirement for colonization of

contact lenses or for causing ocular diseases. Serratamolide may be

more relevant in environmental settings than for human infections,

as the majority of pigmented strains tested (66.7%, n = 9) had the

swrW gene, and pigmentation is generally associated with

environmental isolates, whereas clinical isolates are almost

exclusively non-pigmented [42]. In an environmental setting

serratamolide could contribute to the competitiveness of S.

marcescens as it is a broad spectrum antibiotic. Furthermore, it

Figure 5. Serratamolide is hemolytic to erythrocytes and
cytotoxic to epithelial cells in vitro. A. Hemolysis of DMSO and
serratamolide (1 mg/ml) to sheep red blood cells. Wells were cut into a
TSA+sheep blood agar plate, and DMSO or serratamolide was added to
the well and incubated for 24 hours. White arrow indicates zone of
hemolysis around serratamolide treated well. B. Hemolysis of murine
red blood cells in solution by serratamolide (mg/ml) incubated for 10
seconds. Distilled water was used as a complete lysis control (Lysis). A
representative experiment is shown. Error bars indicate one standard
deviation. C. Cytotoxicity to immortalized human airway (A549) and
corneal (HCLE) epithelial cells was measured using alamar blue
fluorescence that provided a positive output for viability of cells. The
average of eight independent replicates is shown for each cell line from
two separate experiments. Error bars indicate one standard deviation.
doi:10.1371/journal.pone.0036398.g005
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was shown that a surfactant produced by Serratia sp. ATCC 39006

facilitates the dispersal of the antibiotic pigment prodigiosin [43],

and serratamolide may act in an analogous fashion.

Serratamolide has shown promise as an anticancer agent for its

proapoptotic effect upon breast cancer and B-cell chronic

lymphocytic leukemia cells [44,45]. Therefore, understanding

the pathways that control serratamolide production may yield

improved ways to generate this cyclodepsipeptide.

Further studies will focus on determining the regulatory

pathway by which CRP regulates serratamolide production, and

characterizing the role this surfactant plays in host-pathogen

interactions.

Methods

Growth Conditions and Strains
All bacteria were cultured with LB medium (per liter: tryptone –

10 g, yeast extract –5 g, NaCl –5 g, with or without agar –15 g),

except when tested for hemolytic zones on blood agar plates

(TSA+5% sheep blood, Becton Dickenson BBL TSA II).

Swarming plates consisted of LB medium with 0.6% agar (w/v).

Antibiotics were supplemented when needed, with kanamycin at

50–100 mg/ml, gentamicin at 10 mg/ml, and tetracycline at

10 mg/ml. The Escherichia coli strains, SM10 and S17–1, were

used for conjugations, and EC100D (Epicentre) was used for

plasmid preparations. Strains are listed in Table S1. S. marcescens

strains used were CMS376 (Presque Isle Cultures strain number

3611) [18], Nima, a strain used by pioneering prodigiosin

researcher, Robert Williams and colleagues [46], CHASM a

compost heap acquired S. marcescens isolate [14], and a number of

ocular clinical isolates from keratitis patients from the Charles T.

Campbell Laboratory of Ophthalmic Microbiology at the

University of Pittsburgh Vision Center.

Genetic Analysis and Plasmids
Transposon mutations were introduced into S. marcescens using

transposon delivery vectors pBT20 [47] and pSC189 [48], and

subsequently mapped, as previously described [18]. Transposon

mutant strains were collected in 96 well plates, transferred onto

blood agar plates, incubated for 2–3 days at 30uC, and screened

for colonies with altered hemolysis zones.

For plasmid generation, chromosomal DNA from CMS376

(Table S1) was amplified using Phusion polymerase (NEB). PCR

generated amplicons were mixed with linearized vector DNA in an

approximately 10:1 ratio and used to transform Saccharomyces

cerevisiae strain InvSc1 with selection for uracil prototrophy, as

previously described [49,50]. Plasmids were isolated from yeast

colonies after 3–4 days of growth on uracil-drop out medium [49],

and isolated by the smash and grab method [49]. Plasmids were

moved into E. coli strain EC100D by electroporation, screened by

diagnostic PCR, and inserts were verified by sequencing at the

University of Pittsburgh Genomics and Proteomics Core facility.

For complementation analysis and overexpression of serrata-

molide, the swrW open reading frame (ORF) was amplified with

primers 1630–1631, and cloned using yeast in vivo recombineering

into pMQ125 that had been linearized with EcoR1, using

previously described methods [50]. The pMQ125 vector has an

arabinose-inducible promoter and a p15a-based replicon [28].

For insertional mutagenesis of hexS, phlA, prtS, shlA, and swrW,

an internal fragment of each gene was amplified and cloned in

either pMQ118 [28] or pStvZ3 [14] that had been linearized with

BamH1 using in vivo cloning methods as noted above. The primer

sets to amplify the internal fragments are listed in Table S2 and

were 2014–2015 for hexS, 1456–1457 for phlA, 996–997 for prtS,

1022–1023 for shlA, and 1639–1640 for swrW. The resulting

plasmids were verified using PCR and sequencing, and introduced

into the recipient strain by conjugation and selection for

kanamycin (100 mg/ml), as previously described [14]. The fimC

gene was mutated using a pMQ118-based insertion plasmid,

pMQ167, as previously described [17].

Detection of the swrW Gene in S. marcescens Isolates
Bacteria from frozen stocks were streaked to single colonies on

LB or TSA blood agar plates. DNA was extracted from a single

colony using Quick Extract (Epicentre) according to the manu-

facturers specifications. PCR was performed using standard Taq

polymerase (New England Biolabs), and standard conditions using

the primers set 1639 and 1640 (Table S2) to detect the swrW gene.

S. marcescens (CMS376) and Staphylococcus aureus (MZ100) chromo-

somal DNA were used as a positive and negative controls

respectively. Analysis was performed twice with each primer set

and any reproducibly produced amplicon of the expected size for

any strain was considered a positive result. A quality control PCR

reaction was also performed on each DNA preparation to

eliminate false negative results using previously described primers

(736 and 737) that amplify the oxyR gene [18].

Analysis of swrW Expression
For analysis of swrW expression, a 351 base pair region of DNA

immediately upstream of the swrW open reading frame was fused

with the tdtomato derivative of dsred [51] in pBBR1-based plasmid,

pMQ361, yielding pMQ376. The pMQ361 plasmid was made by

digesting pMQ131 with SmaI and mixing with a PCR amplicon

containing the nptII promoter from pMQ118 (Table S1), amplified

with primers 2516 and 2517, and an amplicon containing DNA

upstream of swrW that had been made with primers 2768–9. This

region of DNA contains a predicted promoter, as previously noted

[21,22,23].

The WT and a Dcrp mutant strain [17] bearing pMQ376 were

grown overnight at 30uC in LB broth (5 ml) supplemented with

kanamycin (100 mg/ml) in 206150 mm glass test tubes rotated on

a TC-7 tissue culture rotor (New Brunswick Scientific), set at speed

setting 8. The same strains were grown with the empty vector

pMQ131 as a control for background fluorescence. Cultures that

had grown to saturation (OD600 = ,5.0), were diluted 1:100 in the

same medium and incubated at 30uC with aeration. At designated

time points, samples (0.15 ml) were removed to determine culture

density (OD = 600 nm) and fluorescence (excitation filter: 545/40,

emission filter: 590/20) using a plate reader (Biotek Synergy 2).

Background fluorescence was equivalent for both strains (data not

shown). Relative fluorescence units (RFU) were determined by

dividing fluorescence by culture optical density. The experiment

was repeated on two different days with a highly similar result.

To obtain cells for RNA extraction, cultures were first

inoculated into 5 ml of LB medium, then vortexed and diluted

1:5000 in LB to reduce the inoculum. The diluted cultures were

grown overnight in LB medium, subcultured to OD600 = 0.1,

grown to OD600 = 0.8, subcultured to OD600 = 0.1 and allowed

to grow. Samples were taken for RNA analysis until the cultures

reached OD600 = ,3.5. RNA was isolated from bacteria follow-

ing the method of Wargo, et al, [52] including the three rounds of

DNase treatment. RNA was normalized to 50 ng/ml using DNase-

free water and 5 ml was used in each reverse transcriptase (RT)

reaction using Superscript III RT (Invitrogen) following the

manufacturers specifications. A PCR reaction with a 94uC hold for

60 seconds, followed by 30 cycles of 20 seconds at 94uC, 20

seconds at 55uC, and 30 seconds at 72uC, followed by a 72uC hold

for 60 seconds was used to detect the amount of transcript from
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the 16S rDNA gene as a control to normalize samples and the

swrW gene. Other controls included a no-reverse transcriptase and

no-RNA reactions, and these showed that there was no

contaminating DNA (data not shown). The 16S rDNA gene was

amplified by 2638 and 2639 using previously described primers

[11]. The swrW gene was amplified with primers 2917 and 2918.

Amplicons were run on 1.5% agarose gels and imaged using a

Carestream Gel Logic 212Pro device. The experiment was

repeated three times with similar results.

Hemolysis, Swarming and Surfactant Zone Assays
Hemolysis on blood agar plates was performed by plating ten

microliters of bacteria from a liquid culture onto blood agar plates

and incubating at 30uC for 48 hours.

For quantitative hemolysis assays, fresh mouse blood from

C57BL/6 mice were washed in PBS and suspended in PBS at

,26105 red blood cells (RBC) per ml. For the hemolysis assay,

70 ml of RBC suspension was incubated with either 50 ml of

DMSO or DMSO containing serratamolide (50 mg/ml in

DMSO). RBCs were incubated in sterile ddH2O for complete

lysis. The cells were incubated for seven minutes in microfuge

tubes that were centrifuged for 1 minute (5006g), 100 ml of

supernatent was transferred to a microplate and the absorbance

was read at 405 nm. The experiment was performed in triplicate

on two separate days with similar results.

For the serratamolide assay using blood agar plates, a 5 mm

hole was cut with a cork borer (Sigma Aldrich Z165220). One

hundred microliters of molten LB agar was added to seal the

bottom of the well and allowed to harden. One hundred

microliters of DMSO or serratamolide in DMSO (1 mg/ml) was

added to the well, and the plate was placed at 30uC for 18–20

hours. The experiment was performed on different days with the

same result.

Swarming assays were performed as previously described [13]

using LB agar with reduced agar concentration (0.6% w/v).

Bacteria were placed in a small spot on the top of the agar using a

sterile toothpick. The plate was then incubated at 30uC for 18–20

hours. When DMSO or serratamolide were used, the bacteria was

applied to the plate followed by ten microliters of DMSO or

serratamolide in DMSO (1 mg/ml) that was placed gently on top

of the bacteria with a pipetteman.

Optically clear surfactant zones were measured on swarming

agar plates after incubation for ,20 hours at 30uC. The edge of

the surfactant zone and colony were marked and the maximum

distance was measured in mm.

Identification and Purification of Serratamolide
For comparative analysis of secreted metabolites of S. marcescens

wild-type and mutants strains, 10 ml of overnight culture was

pelleted. The supernatant was extracted twice with ethyl acetate

(5 ml) and the combined ethyl acetate was evaporated in vacuo. The

residue was dissolved in 0.5 ml MeOH and an aliquot (20 mL) was

analyzed using a Dionex HPLC and a Shimadzu LC-MS. Each

analysis was repeated at least twice to ensure the reproducibility.

For isolation of serratamolide, 1 L of the swrW mutant expressing

swrW from pMQ125+swrW induced with arabinose at 0.2% (v/v)

was pelleted and the supernant was extracted with ethyl acetate

(1 L). Evaporation of ethyl acetate gave the crude residue that was

further purified by a Dionex preparative HPLC. The purity of the

isolated serratamolide was ensured by high resolution mass spec

(HR-MS) and 1H NMR analysis in accordance with previously

reported data [45] using our previously published methods [53].

Cytotoxicity Analysis
Human lung carcinoma cells ATCC CCL-185, American Type

Culture Collection (ATCC), Manassas, VA) were maintained in

Gibco Medium 199 with 100 units/ml penicillin G, 0.1 mg/ml

streptomycin and 0.5 mg/ml gentamicin, 10% fetal bovine serum

(FBS), and 5% sodium bicarbonate.

Human corneal-limbal epithelial cells (HCLE) [54] were

obtained from Dr. Jes Klarlund with permission from Ilene

Gipson, and were grown in Keratinocyte-SFM (serum free

medium) with L-Glutamine, supplemented with 25 mg/ml BPE,

0.2 ng/ml EGF, and 1 mM CaCl2, without any antibiotics.

To measure cytotoxicity, confluent cell layers were exposed to

serratamolide in DMSO or DMSO alone, such that the

concentration of DMSO in each well was 5% (v/v) for 2 hours

at 37uC in 5% CO2. Viability of cell layers was assessed using

Alamar Blue (Invitrogen, Camarillo, CA). Cells with only DMSO

were used as mock wells to indicate full viability (Mock), while

triton X-100 (0.25% v/v) was used to determine the reading for

non-viable cells (Lysis). After 2 hours, media was removed from all

wells, and 200 ml of a 4% Alamar Blue solution in growth medium

was added to each well. The plate was returned to the incubator

for 1.5 hours at 37uC in 5% CO2, and relative fluorescence units

(RFU) were determined using a plate reader (Biotek Synergy 2)

with a 500/27 excitation filter and a 620/40 emission filter.

The percent cytotoxicity value was determined using RFU

values from the Alamar Blue analysis. The following formula was

used: 1006(Mock RFU – Sample RFU)/(Mock RFU – Lysis

RFU).

Statistical Analysis
All experiments were performed at least twice on different days

with reproducible results. Statistical analysis was performed using

Prism 5 software and consisted of two-tailed Student’s T-tests of

One-way ANOVA with a Tukey post-test, as noted. Significance

was set at p,0.05.
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