144 research outputs found

    Flared landing approach flying qualities. Volume 1: Experiment design and analysis

    Get PDF
    An inflight research study was conducted utilizing the USAF Total Inflight Simulator (TIFS) to investigate longitudinal flying qualities for the flared landing approach phase of flight. The purpose of the experiment was to generate a consistent set of data for: (1) determining what kind of commanded response the pilot prefers in order to flare and land an airplane with precision, and (2) refining a time history criterion that took into account all the necessary variables and their characteristics that would accurately predict flying qualities. The result of the first part provides guidelines to the flight control system designer, using MIL-F-8785-(C) as a guide, that yield the dynamic behavior pilots perfer in flared landings. The results of the second part provides the flying qualities engineer with a newly derived flying qualities predictive tool which appears to be highly accurate. This time domain predictive flying qualities criterion was applied to the flight data as well as six previous flying qualities studies, and the results indicate that the criterion predicted the flying qualities level 81% of the time and the Cooper-Harper pilot rating, within + or - 1, 60% of the time

    Flared landing approach flying qualities. Volume 2: Appendices

    Get PDF
    An in-flight research study was conducted utilizing the USAF/Total In-Flight Simulator (TIFS) to investigate longitudinal flying qualities for the flared landing approach phase of flight. A consistent set of data were generated for: determining what kind of command response the pilot prefers/requires in order to flare and land an aircraft with precision, and refining a time history criterion that took into account all the necessary variables and the characteristics that would accurately predict flying qualities. Seven evaluation pilots participated representing NASA Langley, NASA Dryden, Calspan, Boeing, Lockheed, and DFVLR (Braunschweig, Germany). The results of the first part of the study provide guidelines to the flight control system designer, using MIL-F-8785-(C) as a guide, that yield the dynamic behavior pilots prefer in flared landings. The results of the second part provide the flying qualities engineer with a derived flying qualities predictive tool which appears to be highly accurate. This time-domain predictive flying qualities criterion was applied to the flight data as well as six previous flying qualities studies, and the results indicate that the criterion predicted the flying qualities level 81% of the time and the Cooper-Harper pilot rating, within + or - 1%, 60% of the time

    Role of Pneumococcal NanA Neuraminidase Activity in Peripheral Blood

    Get PDF
    The most frequent form of hemolytic-uremic syndrome (HUS) is associated with infections caused by Shiga-like toxin-producing Enterohaemorrhagic Escherichia coli (STEC). In rarer cases HUS can be triggered by Streptococcus pneumoniae. While production of Shiga-like toxins explains STEC-HUS, the mechanisms of pneumococcal HUS are less well known. S. pneumoniae produces neuraminidases with activity against cell surface sialic acids that are critical for factor H-mediated complement regulation on cells and platelets. The aim of this study was to find out whether S. pneumoniae neuraminidase NanA could trigger complement activation and hemolysis in whole blood. We studied clinical S. pneumoniae isolates and two laboratory strains, a wild-type strain expressing NanA, and a NanA deletion mutant for their ability to remove sialic acids from various human cells and platelets. Red blood cell lysis and activation of complement was measured ex vivo by incubating whole blood with bacterial culture supernatants. We show here that NanA expressing S. pneumoniae strains and isolates are able to remove sialic acids from cells, and platelets. Removal of sialic acids by NanA increased complement activity in whole blood, while absence of NanA blocked complement triggering and hemolytic activity indicating that removal of sialic acids by NanA could potentially trigger pHUS.Peer reviewe

    The effect of the menstrual cycle on physical characteristics (speed, strength, and endurance) in women in Saudi Arabia

    Get PDF
    The increasing participation of women in sports has raised interest in understanding how the menstrual cycle, specifically estrogen, progesterone, follicle-stimulating hormone (FSH), and luteinizing hormone (LH), affects athletic performance. These hormones fluctuate throughout the menstrual cycle, which is divided into the early follicular phase, ovulatory period, and mid-luteal phase, each with distinct hormonal profiles. While estrogen is believed to have an anabolic effect on skeletal muscle and influence substrate metabolism, progesterone may have an antiestrogenic effect, potentially affecting physical performance. However, research on the impact of these hormone fluctuations on performance yields contradictory results. Some studies report improved performance during various menstrual cycle phases, while others find no significant differences. Additionally, the effects of oral contraceptives (OCPs) on muscle strength and function remain unclear. Menopause, characterized by a decline in skeletal muscle mass and bone density, is associated with reduced physical performance in women. More research is needed to understand the effects of estrogen and progesterone fluctuations on physical performance in women, emphasizing the importance of gender-specific research and guidelines for optimizing athletic performance.

    Species Specificity in Major Urinary Proteins by Parallel Evolution

    Get PDF
    Species-specific chemosignals, pheromones, regulate social behaviors such as aggression, mating, pup-suckling, territory establishment, and dominance. The identity of these cues remains mostly undetermined and few mammalian pheromones have been identified. Genetically-encoded pheromones are expected to exhibit several different mechanisms for coding 1) diversity, to enable the signaling of multiple behaviors, 2) dynamic regulation, to indicate age and dominance, and 3) species-specificity. Recently, the major urinary proteins (Mups) have been shown to function themselves as genetically-encoded pheromones to regulate species-specific behavior. Mups are multiple highly related proteins expressed in combinatorial patterns that differ between individuals, gender, and age; which are sufficient to fulfill the first two criteria. We have now characterized and fully annotated the mouse Mup gene content in detail. This has enabled us to further analyze the extent of Mup coding diversity and determine their potential to encode species-specific cues

    Differential gene expression between wild-type and Gulo-deficient mice supplied with vitamin C

    Get PDF
    The aim of this study was to test the hypothesis that hepatic vitamin C (VC) levels in VC deficient mice rescued with high doses of VC supplements still do not reach the optimal levels present in wild-type mice. For this, we used a mouse scurvy model (sfx) in which the L-gulonolactone oxidase gene (Gulo) is deleted. Six age- (6 weeks old) and gender- (female) matched wild-type (WT) and sfx mice (rescued by administering 500 mg of VC/L) were used as the control (WT) and treatment (MT) groups (n = 3 for each group), respectively. Total hepatic RNA was used in triplicate microarray assays for each group. EDGE software was used to identify differentially expressed genes and transcriptomic analysis was used to assess the potential genetic regulation of Gulo gene expression. Hepatic VC concentrations in MT mice were significantly lower than in WT mice, even though there were no morphological differences between the two groups. In MT mice, 269 differentially expressed transcripts were detected (≥ twice the difference between MT and WT mice), including 107 up-regulated and 162 down-regulated genes. These differentially expressed genes included stress-related and exclusively/predominantly hepatocyte genes. Transcriptomic analysis identified a major locus on chromosome 18 that regulates Gulo expression. Since three relevant oxidative genes are located within the critical region of this locus we suspect that they are involved in the down-regulation of oxidative activity in sfx mice

    Nicotinic receptors

    Get PDF
    Regulation of normal or abnormal behaviour is critically controlled by the central serotonergic systems. Recent evidence has suggested that serotonin (5-HT) neurotransmission dysfunction contributes to a variety of pathological conditions, including depression, anxiety, schizophrenia and Parkinson’s disorders. There is also a great amount of evidence indicating that 5-HT signalling may affect the reinforcing properties of drugs of abuse by the interaction and modulation of dopamine (DA) function. This chapter is focused on one of the more addictive drugs, nicotine. It is widely recognised that the effects of nicotine are strongly associated with the stimulatory action it exhibits on mesolimbic DAergic function. We outline the role of 5-HT and its plethora of receptors, focusing on 5-HT2 subtypes with relation to their involvement in the neurobiology of nicotine addiction. We also explore the novel pharmacological approaches using 5-HT agents for the treatment of nicotine dependence. Compelling evidence shows that 5-HT2C receptor agonists may be possible therapeutic targets for smoking cessation, although further investigation is required.peer-reviewe

    Gradients of anthropogenic nutrient enrichment alter N Composition and DOM stoichiometry in freshwater ecosystems

    Get PDF
    Plain language summary Ammonium and nitrate in freshwaters have received considerable attention due to their clear ecological and health effects. A comprehensive assessment of N in freshwaters that includes DON is lacking. Including DON in studies of surface water chemistry is important because it can cause eutrophication and certain forms can be rapidly removed by microbial communities. Here, we document how elevated levels of TDN impact the concentrations and relative proportions of all three forms of dissolved N and the stoichiometry of DOM. Our results suggest that human activities fundamentally alter the composition of the dissolved nitrogen pool and the stoichiometry of DOM. Results also highlight feedbacks between the C and N cycles in freshwater ecosystems that are poorly studied.A comprehensive cross-biome assessment of major nitrogen (N) species that includes dissolved organic N (DON) is central to understanding interactions between inorganic nutrients and organic matter in running waters. Here, we synthesize stream water N chemistry across biomes and find that the composition of the dissolved N pool shifts from highly heterogeneous to primarily comprised of inorganic N, in tandem with dissolved organic matter (DOM) becoming more N-rich, in response to nutrient enrichment from human disturbances. We identify two critical thresholds of total dissolved N (TDN) concentrations where the proportions of organic and inorganic N shift. With low TDN concentrations (0–1.3 mg/L N), the dominant form of N is highly variable, and DON ranges from 0% to 100% of TDN. At TDN concentrations above 2.8 mg/L, inorganic N dominates the N pool and DON rarely exceeds 25% of TDN. This transition to inorganic N dominance coincides with a shift in the stoichiometry of the DOM pool, where DOM becomes progressively enriched in N and DON concentrations are less tightly associated with concentrations of dissolved organic carbon (DOC). This shift in DOM stoichiometry (defined as DOC:DON ratios) suggests that fundamental changes in the biogeochemical cycles of C and N in freshwater ecosystems are occurring across the globe as human activity alters inorganic N and DOM sources and availability. Alterations to DOM stoichiometry are likely to have important implications for both the fate of DOM and its role as a source of N as it is transported downstream to the coastal ocean

    Vision, challenges and opportunities for a Plant Cell Atlas

    Get PDF
    With growing populations and pressing environmental problems, future economies will be increasingly plant-based. Now is the time to reimagine plant science as a critical component of fundamental science, agriculture, environmental stewardship, energy, technology and healthcare. This effort requires a conceptual and technological framework to identify and map all cell types, and to comprehensively annotate the localization and organization of molecules at cellular and tissue levels. This framework, called the Plant Cell Atlas (PCA), will be critical for understanding and engineering plant development, physiology and environmental responses. A workshop was convened to discuss the purpose and utility of such an initiative, resulting in a roadmap that acknowledges the current knowledge gaps and technical challenges, and underscores how the PCA initiative can help to overcome them.</jats:p
    • …
    corecore