344 research outputs found

    Human Processing of Behaviorally Relevant and Irrelevant Absence of Expected Rewards: A High-Resolution ERP Study

    Get PDF
    Acute lesions of the posterior medial orbitofrontal cortex (OFC) in humans may induce a state of reality confusion marked by confabulation, disorientation, and currently inappropriate actions. This clinical state is strongly associated with an inability to abandon previously valid anticipations, that is, extinction capacity. In healthy subjects, the filtering of memories according to their relation with ongoing reality is associated with activity in posterior medial OFC (area 13) and electrophysiologically expressed at 220–300 ms. These observations indicate that the human OFC also functions as a generic reality monitoring system. For this function, it is presumably more important for the OFC to evaluate the current behavioral appropriateness of anticipations rather than their hedonic value. In the present study, we put this hypothesis to the test. Participants performed a reversal learning task with intermittent absence of reward delivery. High-density evoked potential analysis showed that the omission of expected reward induced a specific electrocortical response in trials signaling the necessity to abandon the hitherto reward predicting choice, but not when omission of reward had no such connotation. This processing difference occurred at 200–300 ms. Source estimation using inverse solution analysis indicated that it emanated from the posterior medial OFC. We suggest that the human brain uses this signal from the OFC to keep thought and behavior in phase with reality

    Urinary concentrations of GHB and its novel amino acid and carnitine conjugates following controlled GHB administration to humans

    Full text link
    Gamma-hydroxybutyrate (GHB) remains a challenging clinical/forensic toxicology drug. Its rapid elimination to endogenous levels mainly causes this. Especially in drug-facilitated sexual assaults, sample collection often occurs later than the detection window for GHB. We aimed to investigate new GHB conjugates with amino acids (AA), fatty acids, and its organic acid metabolites for their suitability as ingestion/application markers in urine following controlled GHB administration to humans. We used LC–MS/MS for validated quantification of human urine samples collected within two randomized, double-blinded, placebo-controlled crossover studies (GHB 50 mg/kg, 79 participants) at approximately 4.5, 8, 11, and 28 h after intake. We found significant differences (placebo vs. GHB) for all but two analytes at 4.5 h. Eleven hours post GHB administration, GHB, GHB-AAs, 3,4-dihydroxybutyric acid, and glycolic acid still showed significantly higher concentrations; at 28 h only GHB-glycine. Three different discrimination strategies were evaluated: (a) GHB-glycine cut-off concentration (1 µg/mL), (b) metabolite ratios of GHB-glycine/GHB (2.5), and (c) elevation threshold between two urine samples (> 5). Sensitivities were 0.1, 0.3, or 0.5, respectively. Only GHB-glycine showed prolonged detection over GHB, mainly when compared to a second time- and subject-matched urine sample (strategy c)

    Changes in axonal excitability of primary sensory afferents with general anaesthesia in humans

    Full text link
    BACKGROUND: Intraoperative monitoring of neuronal function is important in a variety of surgeries. The type of general anaesthetic used can affect the interpretation and quality of such recordings. Although the principal effects of general anaesthetics are synaptically mediated, the extent to which they affect excitability of the peripheral afferent nervous system is unclear. METHODS: Forty subjects were randomized in a stratified manner into two groups, anaesthetized with either propofol or sevoflurane. The threshold tracking technique (QTRAC(®)) was used to measure nerve excitability parameters of the sensory action potential of the median nerve before and after induction of general anaesthesia. RESULTS: Several parameters of peripheral sensory afferent nerve excitability changed after induction of general anaesthesia, which were similar for both propofol and sevoflurane. The maximum amplitude of the sensory nerve action potential decreased in both groups (propofol: 25.3%; sevoflurane: 29.5%; both P<0.01). The relative refractory period [mean (sd)] also decreased similarly in both groups [propofol: -0.6 (0.7) ms; sevoflurane: -0.3 (0.5) ms; both P<0.01]. Skin temperature at the stimulation site increased significantly in both groups [propofol: +1.2 (1.0)°C; sevoflurane: +1.7 (1.4)°C; both P<0.01]. CONCLUSIONS: Small changes in excitability of primary sensory afferents after the induction of anaesthesia with propofol or sevoflurane were detected. These effects, which were non-specific and are possibly explained by changes observed in temperature, demonstrate possible anaesthetic effects on intraoperative neuromonitoring

    Transcriptional Activation of Pyoluteorin Operon Mediated by the LysR-Type Regulator PltR Bound at a 22 bp lys Box in Pseudomonas aeruginosa M18

    Get PDF
    Pseudomonas aeruginosa M18, a rhizosphere-isolated bacterial strain showing strong antifungal activity, can produce secondary metabolites such as phenazine-1-carboxylic acid and pyoluteorin (Plt). The LysR-type transcriptional regulator PltR activates the Plt biosynthesis operon pltLABCDEFG, the expression of which is induced by Plt. Here, we identified and characterized the non-conserved pltL promoter (pltLp) specifically activated by PltR and its upstream neighboring lys box from the complicated pltR–pltL intergenic sequence. The 22 bp palindromic lys box, which consists of two 9 bp complementary inverted repeats interrupted by 4 bp, was found to contain the conserved, GC-rich LysR-binding motif (T-N11-A). Evidence obtained in vivo from mutational and lacZ report analyses and in vitro from electrophoretic mobility shift assays reveals that the PltR protein directly bound to the pltLp region as the indispensable binding motif “lys box”, thereby transcriptionally activating the pltLp-driven plt operon expression. Plt, as a potential non-essential coinducer of PltR, specifically induced the pltLp expression and thus strengthened its biosynthetic plt operon expression

    A 4-year follow-up of patients with medication-overuse headache previously included in a randomized multicentre study

    Get PDF
    The aim of this study was to evaluate the long-term outcome in 61 patients with medication-overuse headache (MOH) who 4 years previously had been included in a randomized open-label prospective multicentre study. Sixty patients still alive after 4 years were invited to a follow-up investigation. Fifty patients (83%) participated. Sixteen visited a neurologist, 22 were interviewed through telephone, 2 gave response by a letter, and 10 were evaluated through hospital records. The influence of baseline characteristics on outcome 4 years later was evaluated by non-parametric tests. p values below 0.01 were considered significant. At follow-up, the 50 persons had a mean reduction of 6.5 headache days/month (p < 0.001) and 9.5 acute headache medication days/month (p < 0.001) compared to baseline. Headache index/month was reduced from 449 to 321 (p < 0.001). Sixteen persons (32%) were considered as responders due to a ≥50% reduction in headache frequency from baseline, whereas 17 (34%) persons met the criteria for MOH. None of the baseline characteristics consistently influenced all five outcome measures. Total Hospital Anxiety and Depression Scale (HADS) score at baseline was predictors (p < 0.005) for being a responder after 4 years. At 4 years’ follow-up, one-third of the 50 MOH patients had ≥50% reduction in headache frequency from baseline. A low total HADS score at baseline was associated with the most favorable outcome

    Human physiologically based pharmacokinetic model for propofol

    Get PDF
    BACKGROUND: Propofol is widely used for both short-term anesthesia and long-term sedation. It has unusual pharmacokinetics because of its high lipid solubility. The standard approach to describing the pharmacokinetics is by a multi-compartmental model. This paper presents the first detailed human physiologically based pharmacokinetic (PBPK) model for propofol. METHODS: PKQuest, a freely distributed software routine , was used for all the calculations. The "standard human" PBPK parameters developed in previous applications is used. It is assumed that the blood and tissue binding is determined by simple partition into the tissue lipid, which is characterized by two previously determined set of parameters: 1) the value of the propofol oil/water partition coefficient; 2) the lipid fraction in the blood and tissues. The model was fit to the individual experimental data of Schnider et. al., Anesthesiology, 1998; 88:1170 in which an initial bolus dose was followed 60 minutes later by a one hour constant infusion. RESULTS: The PBPK model provides a good description of the experimental data over a large range of input dosage, subject age and fat fraction. Only one adjustable parameter (the liver clearance) is required to describe the constant infusion phase for each individual subject. In order to fit the bolus injection phase, for 10 or the 24 subjects it was necessary to assume that a fraction of the bolus dose was sequestered and then slowly released from the lungs (characterized by two additional parameters). The average weighted residual error (WRE) of the PBPK model fit to the both the bolus and infusion phases was 15%; similar to the WRE for just the constant infusion phase obtained by Schnider et. al. using a 6-parameter NONMEM compartmental model. CONCLUSION: A PBPK model using standard human parameters and a simple description of tissue binding provides a good description of human propofol kinetics. The major advantage of a PBPK model is that it can be used to predict the changes in kinetics produced by variations in physiological parameters. As one example, the model simulation of the changes in pharmacokinetics for morbidly obese subjects is discussed

    Dynamic Assessment of Baroreflex Control of Heart Rate During Induction of Propofol Anesthesia Using a Point Process Method

    Get PDF
    In this article, we present a point process method to assess dynamic baroreflex sensitivity (BRS) by estimating the baroreflex gain as focal component of a simplified closed-loop model of the cardiovascular system. Specifically, an inverse Gaussian probability distribution is used to model the heartbeat interval, whereas the instantaneous mean is identified by linear and bilinear bivariate regressions on both the previous R−R intervals (RR) and blood pressure (BP) beat-to-beat measures. The instantaneous baroreflex gain is estimated as the feedback branch of the loop with a point-process filter, while the RRBP feedforward transfer function representing heart contractility and vasculature effects is simultaneously estimated by a recursive least-squares filter. These two closed-loop gains provide a direct assessment of baroreflex control of heart rate (HR). In addition, the dynamic coherence, cross bispectrum, and their power ratio can also be estimated. All statistical indices provide a valuable quantitative assessment of the interaction between heartbeat dynamics and hemodynamics. To illustrate the application, we have applied the proposed point process model to experimental recordings from 11 healthy subjects in order to monitor cardiovascular regulation under propofol anesthesia. We present quantitative results during transient periods, as well as statistical analyses on steady-state epochs before and after propofol administration. Our findings validate the ability of the algorithm to provide a reliable and fast-tracking assessment of BRS, and show a clear overall reduction in baroreflex gain from the baseline period to the start of propofol anesthesia, confirming that instantaneous evaluation of arterial baroreflex control of HR may yield important implications in clinical practice, particularly during anesthesia and in postoperative care.National Institutes of Health (U.S.) (Grant R01-HL084502)National Institutes of Health (U.S.) (Grant K25-NS05758)National Institutes of Health (U.S.) (Grant DP2- OD006454)National Institutes of Health (U.S.) (Grant T32NS048005)National Institutes of Health (U.S.) (Grant T32NS048005)National Institutes of Health (U.S.) (Grant R01-DA015644)Massachusetts General Hospital (Clinical Research Center, UL1 Grant RR025758

    Secondary Metabolites of Pseudomonas fluorescens CHA0 Drive Complex Non-Trophic Interactions with Bacterivorous Nematodes

    Get PDF
    Non-trophic interactions are increasingly recognised as a key parameter of predator–prey interactions. In soil, predation by bacterivorous nematodes is a major selective pressure shaping soil bacterial communities, and many bacteria have evolved defence mechanisms such as toxicity. In this study, we show that extracellular secondary metabolites produced by the model soil bacterium Pseudomonas fluorescens CHA0 function as a complex defence strategy against bacterivorous nematodes. Using a collection of functional mutants lacking genes for the biosynthesis of one or several extracellular metabolites, we evaluated the impact of bacterial secondary metabolites on the survival and chemotactic behaviour of the nematode Caenorhabditis elegans. Additionally, we followed up the stress status of the nematodes by measuring the activation of the abnormal DAuer Formation (DAF) stress cascade. All studied secondary metabolites contributed to the toxicity of the bacteria, with hydrogen cyanide efficiently repelling the nematodes, and both hydrogen cyanide and 2,4-DAPG functioning as nematicides. Moreover, these metabolites elicited the DAF stress response cascade of C. elegans, showing that they affect nematode physiology already at sublethal concentrations. The results suggest that bacterial secondary metabolites responsible for the suppression of plant pathogens strongly inhibit bacterivorous nematodes and thus likely contribute to the resistance of bacteria against predators in soil
    corecore