4,762 research outputs found

    Polyharmonic approximation on the sphere

    Full text link
    The purpose of this article is to provide new error estimates for a popular type of SBF approximation on the sphere: approximating by linear combinations of Green's functions of polyharmonic differential operators. We show that the LpL_p approximation order for this kind of approximation is σ\sigma for functions having LpL_p smoothness σ\sigma (for σ\sigma up to the order of the underlying differential operator, just as in univariate spline theory). This is an improvement over previous error estimates, which penalized the approximation order when measuring error in LpL_p, p>2 and held only in a restrictive setting when measuring error in LpL_p, p<2.Comment: 16 pages; revised version; to appear in Constr. Appro

    The Marshall Space Flight Center Development of Mirror Modules for the ART-XC Instrument aboard the Spectrum-Roentgen-Gamma Mission

    Get PDF
    The Marshall Space Flight Center (MSFC) is developing x-ray mirror modules for the ART-XC instrument on board the Spectrum-Roentgen Gamma Mission under a Reimbursable Agreement between NASA and the Russian Space Research Institute (IKI.) ART-XC will consist of seven co-aligned x-ray mirror modules with seven corresponding CdTe focal plane detectors. Currently, four of the modules are being fabricated by the Marshall Space Flight Center (MSFC.) Each MSFC module consist of 28 nested Ni/Co thin shells giving an effective area of 65 sq cm at 8 keV, response out to 30 keV, and an angular resolution of 45 arcsec or better HPD. Delivery of these modules to the IKI is scheduled for summer 2013. We present a status of the ART x-ray modules development at the MSFC

    Tensile Fracture of Welded Polymer Interfaces: Miscibility, Entanglements and Crazing

    Get PDF
    Large-scale molecular simulations are performed to investigate tensile failure of polymer interfaces as a function of welding time tt. Changes in the tensile stress, mode of failure and interfacial fracture energy GIG_I are correlated to changes in the interfacial entanglements as determined from Primitive Path Analysis. Bulk polymers fail through craze formation, followed by craze breakdown through chain scission. At small tt welded interfaces are not strong enough to support craze formation and fail at small strains through chain pullout at the interface. Once chains have formed an average of about one entanglement across the interface, a stable craze is formed throughout the sample. The failure stress of the craze rises with welding time and the mode of craze breakdown changes from chain pullout to chain scission as the interface approaches bulk strength. The interfacial fracture energy GIG_I is calculated by coupling the simulation results to a continuum fracture mechanics model. As in experiment, GIG_I increases as t1/2t^{1/2} before saturating at the average bulk fracture energy GbG_b. As in previous simulations of shear strength, saturation coincides with the recovery of the bulk entanglement density. Before saturation, GIG_I is proportional to the areal density of interfacial entanglements. Immiscibiltiy limits interdiffusion and thus suppresses entanglements at the interface. Even small degrees of immisciblity reduce interfacial entanglements enough that failure occurs by chain pullout and GIGbG_I \ll G_b

    Retrospective study of treatment outcome for individuals with aphasia

    Get PDF
    Measurement of outcomes subsequent to treatment and documentation of the efficiency with which outcomes are achieved is critical information for healthcare policy makers and third-party payers. This study employed the ASHA Functional Communication Measure (FCM) scales to retrospectively analyse charts of 20 aphasic patients. By discharge, both severe and moderate groups gained a median (across modalities) of 1 FCM level. The severe group remained dependent for communication, while the moderately impaired group typically achieved independent communication levels. Efficiency (amount of FCM level gain relative to number of treatment sessions) was greater for the moderate group; average number of treatment sessions was 40 for the severe group and 22 for the moderate group

    O(N) methods in electronic structure calculations

    Full text link
    Linear scaling methods, or O(N) methods, have computational and memory requirements which scale linearly with the number of atoms in the system, N, in contrast to standard approaches which scale with the cube of the number of atoms. These methods, which rely on the short-ranged nature of electronic structure, will allow accurate, ab initio simulations of systems of unprecedented size. The theory behind the locality of electronic structure is described and related to physical properties of systems to be modelled, along with a survey of recent developments in real-space methods which are important for efficient use of high performance computers. The linear scaling methods proposed to date can be divided into seven different areas, and the applicability, efficiency and advantages of the methods proposed in these areas is then discussed. The applications of linear scaling methods, as well as the implementations available as computer programs, are considered. Finally, the prospects for and the challenges facing linear scaling methods are discussed.Comment: 85 pages, 15 figures, 488 references. Resubmitted to Rep. Prog. Phys (small changes

    Late-Type Near-Contact Eclipsing Binary [HH97] FS Aur-79

    Get PDF
    The secondary photometric standard star #79 for the FS Aur field (Henden & Honeycutt 1997) designated as [HH97] FS Aur-79 (GSC 1874 399) is a short period (0.2508 days) eclipsing binary whose light curve is a combination of the β\beta Lyr and BY Dra type variables. High signal-to-noise multi-color photometry were obtained using the USNO 1-m telescope. These light curves show asymmetry at quadrature phases (O'Connell effect), which can be modeled with the presence of star spots. A low resolution spectrum obtained with the 3.5-m WIYN telescope at orbital phase 0.76 is consistent with a spectral type of dK7e and dM3e. A radial velocity curve for the primary star was constructed using twenty-four high resolution spectra from the 9.2 m HET. Spectra show H-alpha and H-beta in emission confirming chromospheric activity and possibly the presence of circumstellar material. Binary star models that simultaneously fit the U, B, V, R and RV curves are those with a primary star of mass 0.59+-0.02 Msun, temperature 4100+-25 K, mean radius of 0.67 Rsun, just filling its Roche lobe and a secondary star of mass 0.31+-0.09 Msun, temperature 3425+-25 K, mean radius of 0.48 Rsun, just within its Roche lobe. An inclination angle of 83+-2 degrees with a center of mass separation of 1.62 Rsun is also derived. Star spots, expected for a rotation period of less than a day, had to be included in the modeling to fit the O'Connell effect

    The Rest-frame Optical Colors of 99,000 SDSS Galaxies

    Get PDF
    We synthesize the rest-frame Stroemgren colors using SDSS spectra for 99,088 galaxies selected from Data Release 1. This narrow-band ~200 AA photometric system (uz, vz, bz, yz), first designed for the determination of effective temperature, metallicity and gravity of stars, measures the continuum spectral slope of galaxies in the rest-frame 3200-5800 AA wavelength range. Galaxies form a remarkably narrow locus (~0.03 mag) in the resulting color-color diagram. The Bruzual & Charlot population synthesis models suggest that the position of a galaxy along this locus is controlled by a degenerate combination of metallicity and age of the dominant stellar population. Galaxy distribution along the locus is bimodal, with the local minimum corresponding to an ~1 Gyr old single stellar population. The position perpendicular to the locus is independent of metallicity and age, and reflects the galaxy's dust content, as implied by both the models and the statistics of IRAS detections. A comparison of this locus with the galaxy locus in the H_delta-D_n(4000) diagram, utilized by Kauffmann et al. (2003) to estimate stellar masses, reveals a tight correlation, although the two analyzed spectral ranges barely overlap. Overall, the galaxy spectral energy distribution in the entire UV to near-IR range can be described as a single-parameter family with an accuracy of 0.1 mag, or better. This nearly one-dimensional distribution of galaxies in the multi-dimensional space of measured parameters strongly supports the conclusion of Yip et al. (2004), based on a principal component analysis, that SDSS galaxy spectra can be described by a small number of eigenspectra. Apparently, the contributions of stellar populations that dominate the optical emission from galaxies are combined in a simple and well-defined way.Comment: Accepted for publication in MNRAS; 19 pages, 28 color figure
    corecore