112 research outputs found

    WormQTL-public archive and analysis web portal for natural variation data in Caenorhabditis spp

    Get PDF
    Here, we present WormQTL (http://www.wormqtl.org), an easily accessible database enabling search, comparative analysis and meta-analysis of all data on variation in Caenorhabditis spp. Over the past decade, Caenorhabditis elegans has become instrumental for molecular quantitative genetics and the systems biology of natural variation. These efforts have resulted in a valuable amount of phenotypic, high-throughput molecular and genotypic data across different developmental worm stages and environments in hundreds of C. elegans strains. WormQTL provides a workbench of analysis tools for genotype-phenotype linkage and association mapping based on but not limited to R/qtl (http://www.rqtl.org). All data can be uploaded and downloaded using simple delimited text or Excel formats and are accessible via a public web user interface for biologists and R statistic and web service interfaces for bioinformaticians, based on open source MOLGENIS and xQTL workbench software. WormQTL welcomes data submissions from other worm researcher

    XGAP: a uniform and extensible data model and software platform for genotype and phenotype experiments.

    Get PDF
    We present an extensible software model for the genotype and phenotype community, XGAP. Readers can download a standard XGAP (http://www.xgap.org) or auto-generate a custom version using MOLGENIS with programming interfaces to R-software and web-services or user interfaces for biologists. XGAP has simple load formats for any type of genotype, epigenotype, transcript, protein, metabolite or other phenotype data. Current functionality includes tools ranging from eQTL analysis in mouse to genome-wide association studies in humans.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    A verification protocol for the probe sequences of Affymetrix genome arrays reveals high probe accuracy for studies in mouse, human and rat

    Get PDF
    BACKGROUND: The Affymetrix GeneChip technology uses multiple probes per gene to measure its expression level. Individual probe signals can vary widely, which hampers proper interpretation. This variation can be caused by probes that do not properly match their target gene or that match multiple genes. To determine the accuracy of Affymetrix arrays, we developed an extensive verification protocol, for mouse arrays incorporating the NCBI RefSeq, NCBI UniGene Unique, NIA Mouse Gene Index, and UCSC mouse genome databases. RESULTS: Applying this protocol to Affymetrix Mouse Genome arrays (the earlier U74Av2 and the newer 430 2.0 array), the number of sequence-verified probes with perfect matches was no less than 85% and 95%, respectively; and for 74% and 85% of the probe sets all probes were sequence verified. The latter percentages increased to 80% and 94% after discarding one or two unverifiable probes per probe set, and even further to 84% and 97% when, in addition, allowing for one or two mismatches between probe and target gene. Similar results were obtained for other mouse arrays, as well as for human and rat arrays. Based on these data, refined chip definition files for all arrays are provided online. Researchers can choose the version appropriate for their study to (re)analyze expression data. CONCLUSION: The accuracy of Affymetrix probe sequences is higher than previously reported, particularly on newer arrays. Yet, refined probe set definitions have clear effects on the detection of differentially expressed genes. We demonstrate that the interpretation of the results of Affymetrix arrays is improved when the new chip definition files are used

    Complex nature of SNP genotype effects on gene expression in primary human leucocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome wide association studies have been hugely successful in identifying disease risk variants, yet most variants do not lead to coding changes and how variants influence biological function is usually unknown.</p> <p>Methods</p> <p>We correlated gene expression and genetic variation in untouched primary leucocytes (n = 110) from individuals with celiac disease – a common condition with multiple risk variants identified. We compared our observations with an EBV-transformed HapMap B cell line dataset (n = 90), and performed a meta-analysis to increase power to detect non-tissue specific effects.</p> <p>Results</p> <p>In celiac peripheral blood, 2,315 SNP variants influenced gene expression at 765 different transcripts (< 250 kb from SNP, at FDR = 0.05, <it>cis </it>expression quantitative trait loci, eQTLs). 135 of the detected SNP-probe effects (reflecting 51 unique probes) were also detected in a HapMap B cell line published dataset, all with effects in the same allelic direction. Overall gene expression differences within the two datasets predominantly explain the limited overlap in observed <it>cis</it>-eQTLs. Celiac associated risk variants from two regions, containing genes <it>IL18RAP </it>and <it>CCR3</it>, showed significant <it>cis </it>genotype-expression correlations in the peripheral blood but not in the B cell line datasets. We identified 14 genes where a SNP affected the expression of different probes within the same gene, but in opposite allelic directions. By incorporating genetic variation in co-expression analyses, functional relationships between genes can be more significantly detected.</p> <p>Conclusion</p> <p>In conclusion, the complex nature of genotypic effects in human populations makes the use of a relevant tissue, large datasets, and analysis of different exons essential to enable the identification of the function for many genetic risk variants in common diseases.</p

    Unraveling the Regulatory Mechanisms Underlying Tissue-Dependent Genetic Variation of Gene Expression

    Get PDF
    It is known that genetic variants can affect gene expression, but it is not yet completely clear through what mechanisms genetic variation mediate this expression. We therefore compared the cis-effect of single nucleotide polymorphisms (SNPs) on gene expression between blood samples from 1,240 human subjects and four primary non-blood tissues (liver, subcutaneous, and visceral adipose tissue and skeletal muscle) from 85 subjects. We characterized four different mechanisms for 2,072 probes that show tissue-dependent genetic regulation between blood and non-blood tissues: on average 33.2% only showed cis-regulation in non-blood tissues; 14.5% of the eQTL probes were regulated by different, independent SNPs depending on the tissue of investigation. 47.9% showed a different effect size although they were regulated by the same SNPs. Surprisingly, we observed that 4.4% were regulated by the same SNP but with opposite allelic direction. We show here that SNPs that are located in transcriptional regulatory elements are enriched for tissue-dependent regulation, including SNPs at 3′ and 5′ untranslated regions (P = 1.84×10−5 and 4.7×10−4, respectively) and SNPs that are synonymous-coding (P = 9.9×10−4). SNPs that are associated with complex traits more often exert a tissue-dependent effect on gene expression (P = 2.6×10−10). Our study yields new insights into the genetic basis of tissue-dependent expression and suggests that complex trait associated genetic variants have even more complex regulatory effects than previously anticipated

    Cell Specific eQTL Analysis without Sorting Cells

    Get PDF
    The functional consequences of trait associated SNPs are often investigated using expression quantitative trait locus (eQTL) mapping. While trait-associated variants may operate in a cell-type specific manner, eQTL datasets for such cell-types may not always be available. We performed a genome-environment interaction (GxE) meta-analysis on data from 5,683 samples to infer the cell type specificity of whole blood cis-eQTLs. We demonstrate that this method is able to predict neutrophil and lymphocyte specific cis-eQTLs and replicate these predictions in independent cell-type specific datasets. Finally, we show that SNPs associated with Crohn’s disease preferentially affect gene expression within neutrophils, including the archetypal NOD2 locus

    Automated workflow-based exploitation of pathway databases provides new insights into genetic associations of metabolite profiles

    Get PDF
    Background: Genome-wide association studies (GWAS) have identified many common single nucleotide polymorphisms (SNPs) that associate with clinical phenotypes, but these SNPs usually explain just a small part of the heritability and have relatively modest effect sizes. In contrast, SNPs that associate with metabolite levels generally explain a higher percentage of the genetic variation and demonstrate larger effect sizes. Still, the discovery of SNPs associated with metabolite levels is challenging since testing all metabolites measured in typical metabolomics studies with all SNPs comes with a severe multiple testing penalty. We have developed an automated workflow approach that utilizes prior knowledge of biochemical pathways present in databases like KEGG and BioCyc to generate a smaller SNP set relevant to the metabolite. This paper explores the opportunities and challenges in the analysis of GWAS of metabolomic phenotypes and provides novel insights into the genetic basis of metabolic variation through the re-analysis of published GWAS datasets. Results: Re-analysis of the published GWAS dataset from Illig et al. (Nature Genetics, 2010) using a pathway-based workflow (http://www.myexperiment.org/packs/319.html), confirmed previously identified hits and identified a new locus of human metabolic individuality, associating Aldehyde dehydrogenase family1 L1 (ALDH1L1) with serine/glycine ratios in blood. Replication in an independent GWAS dataset of phospholipids (Demirkan et al., PLoS Genetics, 2012) identified two novel loci supported by additional literature evidence: GPAM (Glycerol-3 phosphate acyltransferase) and CBS (Cystathionine beta-synthase). In addition, the workflow approach provided novel insight into the affected pathways and relevance of some of these gene-metabolite pairs in disease development and progression. Conclusions: We demonstrate the utility of automated exploitation of background knowledge present in pathway databases for the analysis of GWAS datasets of metabolomic phenotypes. We report novel loci and potential biochemical mechanisms that contribute to our understanding of the genetic basis of metabolic variation and its relationship to disease development and progression
    corecore