1,266 research outputs found

    Distributed Holistic Clustering on Linked Data

    Full text link
    Link discovery is an active field of research to support data integration in the Web of Data. Due to the huge size and number of available data sources, efficient and effective link discovery is a very challenging task. Common pairwise link discovery approaches do not scale to many sources with very large entity sets. We here propose a distributed holistic approach to link many data sources based on a clustering of entities that represent the same real-world object. Our clustering approach provides a compact and fused representation of entities, and can identify errors in existing links as well as many new links. We support a distributed execution of the clustering approach to achieve faster execution times and scalability for large real-world data sets. We provide a novel gold standard for multi-source clustering, and evaluate our methods with respect to effectiveness and efficiency for large data sets from the geographic and music domains

    Low impedance printed circuit radiating element

    Get PDF
    A printed circuit radiating element comprises a geometrically symmetric planar area of a conducting material separated from a ground plane by a dielectric medium. The driving point of the radiating element is at the base of a notch in one side thereof so that the driving impedance is reduced from that obtained when the element is driven at its edge. Symmetrically disposed on opposite sides of an axis of symmetry of the element along which the driving point lies are two notches which restore the electrical symmetry of the radiating element thereby to suppress higher order modes. The suppression of these higher order modes results in a radiation pattern with minimal cross-polarized energy in the principal planes and high port-to-port isolation which could not be achieved with an asymmetrical element. Two driving points may be employed with the radiating element to produce a dual linearly polarized antenna and a reactive combiner or hybrid may be employed to obtain circularly-polarized radiations. The shape of the radiating element may be square, rectangular or circular, for example, in accordance with the desired characteristics. A plurality of radiating elements may be interconnected via appropriate transmission paths to form an antenna array

    HoloDetect: Few-Shot Learning for Error Detection

    Full text link
    We introduce a few-shot learning framework for error detection. We show that data augmentation (a form of weak supervision) is key to training high-quality, ML-based error detection models that require minimal human involvement. Our framework consists of two parts: (1) an expressive model to learn rich representations that capture the inherent syntactic and semantic heterogeneity of errors; and (2) a data augmentation model that, given a small seed of clean records, uses dataset-specific transformations to automatically generate additional training data. Our key insight is to learn data augmentation policies from the noisy input dataset in a weakly supervised manner. We show that our framework detects errors with an average precision of ~94% and an average recall of ~93% across a diverse array of datasets that exhibit different types and amounts of errors. We compare our approach to a comprehensive collection of error detection methods, ranging from traditional rule-based methods to ensemble-based and active learning approaches. We show that data augmentation yields an average improvement of 20 F1 points while it requires access to 3x fewer labeled examples compared to other ML approaches.Comment: 18 pages

    Transformation Optics for Plasmonics

    Full text link
    A new strategy to control the flow of surface plasmon polaritons at metallic surfaces is presented. It is based on the application of the concept of Transformation Optics to devise the optical parameters of the dielectric medium placed on top of the metal surface. We describe the general methodology for the design of Transformation-Optical devices for surface plasmons and analyze, for proof-of-principle purposes, three representative examples with different functionalities: a beam shifter, a cylindrical cloak and a ground-plane cloak.Comment: 15 pages, 3 figure

    Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010

    Get PDF
    © Author(s) 2011. This work is distributed under the Creative Commons Attribution 3.0 LicenseAirborne lidar and in-situ measurements of aerosols and trace gases were performed in volcanic ash plumes over Europe between Southern Germany and Iceland with the Falcon aircraft during the eruption period of the Eyjafjalla1 volcano between 19 April and 18 May 2010. Flight planning and measurement analyses were supported by a refined Meteosat ash product and trajectory model analysis. The volcanic ash plume was observed with lidar directly over the volcano and up to a distance of 2700 km downwind, and up to 120 h plume ages. Aged ash layers were between a few 100 m to 3 km deep, occurred between 1 and 7 km altitude, and were typically 100 to 300 km wide. Particles collected by impactors had diameters up to 20 μm diameter, with size and age dependent composition. Ash mass concentrations were derived from optical particle spectrometers for a particle density of 2.6 g cm-3 and various values of the refractive index (RI, real part: 1.59; 3 values for the imaginary part: 0, 0.004 and 0.008). The mass concentrations, effective diameters and related optical properties were compared with ground-based lidar observations. Theoretical considerations of particle sedimentation constrain the particle diameters to those obtained for the lower RI values. The ash mass concentration results have an uncertainty of a factor of two. The maximum ash mass concentration encountered during the 17 flights with 34 ash plume penetrations was below 1 mg m-3. The Falcon flew in ash clouds up to about 0.8 mg m-3 for a few minutes and in an ash cloud with approximately 0.2 mg -3 mean-concentration for about one hour without engine damage. The ash plumes were rather dry and correlated with considerable CO and SO2 increases and O3 decreases. To first order, ash concentration and SO2 mixing ratio in the plumes decreased by a factor of two within less than a day. In fresh plumes, the SO2 and CO concentration increases were correlated with the ash mass concentration. The ash plumes were often visible slantwise as faint dark layers, even for concentrations below 0.1 mg m-3. The large abundance of volatile Aitken mode particles suggests previous nucleation of sulfuric acid droplets. The effective diameters range between 0.2 and 3 μm with considerable surface and volume contributions from the Aitken and coarse mode aerosol, respectively. The distal ash mass flux on 2 May was of the order of 500 (240-1600) kgs -1. The volcano induced about 10 (2.5-50) Tg of distal ash mass and about 3 (0.6-23) Tg of SO2 during the whole eruption period. The results of the Falcon flights were used to support the responsible agencies in their decisions concerning air traffic in the presence of volcanic ash.Peer reviewe

    Charge-Dependence of the Nucleon-Nucleon Interaction

    Full text link
    Based upon the Bonn meson-exchange-model for the nucleon-nucleon (NNNN) interaction, we calculate the charge-independence breaking (CIB) of the NNNN interaction due to pion-mass splitting. Besides the one-pion-exchange (OPE), we take into account the 2π2\pi-exchange model and contributions from three and four irreducible pion exchanges. We calculate the CIB differences in the 1S0^1S_0 effective range parameters as well as phase shift differences for partial waves up to total angular momentum J=4 and laboratory energies below 300 MeV. We find that the CIB effect from OPE dominates in all partial waves. However, the CIB effects from the 2π2\pi model are noticable up to D-waves and amount to about 40% of the OPE CIB-contribution in some partial waves, at 300 MeV. The effects from 3π\pi and 4π\pi contributions are negligible except in 1S0^1S_0 and 3P2^3P_2.Comment: 12 pages, RevTex, 14 figure

    MALT1 Phosphorylation Controls Activation of T Lymphocytes and Survival of ABC-DLBCL Tumor Cells

    No full text
    The CARMA1/CARD11-BCL10-MALT1 (CBM) complex bridges T and B cell antigen receptor (TCR/BCR) ligation to MALT1 protease activation and canonical nuclear factor kappa B (NF-kappa B) signaling. Using unbiased mass spectrometry, we discover multiple serine phosphorylation sites in the MALT1 C terminus after T cell activation. Phospho-specific antibodies reveal that CBM-associated MALT1 is transiently hyper-phosphorylated upon TCR/CD28 co-stimulation. We identify a dual role for CK1 alpha as a kinase that is essential for CBM signalosome assembly as well as MALT1 phosphorylation. Although MALT1 phosphorylation is largely dispensable for protease activity, it fosters canonical NF-kappa B signaling in Jurkat and murine CD4 T cells. Moreover, constitutive MALT1 phosphorylation promotes survival of activated B cell-type diffuse large B cell lymphoma (ABC-DLBCL) cells addicted to chronic BCR signaling. Thus, MALT1 phosphorylation triggers optimal NF-kappa B activation in lymphocytes and survival of lymphoma cells

    Charge-Asymmetry of the Nucleon-Nucleon Interaction

    Get PDF
    Based upon the Bonn meson-exchange model for the nucleon-nucleon (NNNN) interaction, we study systematically the charge-symmetry-breaking (CSB) of the NNNN interaction due to nucleon mass splitting. Particular attention is payed to CSB generated by the 2π2\pi-exchange contribution to the NNNN interaction, πρ\pi\rho diagrams, and other multi-meson-exchanges. We calculate the CSB differences in the 1S0^1S_0 effective range parameters as well as phase shift differences in SS, PP and higher partial waves up to 300 MeV lab. energy. We find a total CSB difference in the singlet scattering length of 1.6 fm which explains the empirical value accurately. The corresponding CSB phase-shift differences are appreciable at low energy in the 1S0^1S_0 state. In the other partial waves, the CSB splitting of the phase shifts is small and increases with energy, with typical values in the order of 0.1 deg at 300 MeV in PP and DD waves.Comment: 11 pages, RevTex, 14 figure
    corecore