2,254 research outputs found
Quantum Bayes rule
We state a quantum version of Bayes's rule for statistical inference and give
a simple general derivation within the framework of generalized measurements.
The rule can be applied to measurements on N copies of a system if the initial
state of the N copies is exchangeable. As an illustration, we apply the rule to
N qubits. Finally, we show that quantum state estimates derived via the
principle of maximum entropy are fundamentally different from those obtained
via the quantum Bayes rule.Comment: REVTEX, 9 page
Entanglement purification of unknown quantum states
A concern has been expressed that ``the Jaynes principle can produce fake
entanglement'' [R. Horodecki et al., Phys. Rev. A {\bf 59}, 1799 (1999)]. In
this paper we discuss the general problem of distilling maximally entangled
states from copies of a bipartite quantum system about which only partial
information is known, for instance in the form of a given expectation value. We
point out that there is indeed a problem with applying the Jaynes principle of
maximum entropy to more than one copy of a system, but the nature of this
problem is classical and was discussed extensively by Jaynes. Under the
additional assumption that the state of the copies of the
quantum system is exchangeable, one can write down a simple general expression
for . We show how to modify two standard entanglement purification
protocols, one-way hashing and recurrence, so that they can be applied to
exchangeable states. We thus give an explicit algorithm for distilling
entanglement from an unknown or partially known quantum state.Comment: 20 pages RevTeX 3.0 + 1 figure (encapsulated Postscript) Submitted to
Physical Review
Role of phason-defects on the conductance of a 1-d quasicrystal
We have studied the influence of a particular kind of phason-defect on the
Landauer resistance of a Fibonacci chain. Depending on parameters, we sometimes
find the resistance to decrease upon introduction of defect or temperature, a
behavior that also appears in real quasicrystalline materials. We demonstrate
essential differences between a standard tight-binding model and a full
continuous model. In the continuous case, we study the conductance in relation
to the underlying chaotic map and its invariant. Close to conducting points,
where the invariant vanishes, and in the majority of cases studied, the
resistance is found to decrease upon introduction of a defect. Subtle
interference effects between a sudden phason-change in the structure and the
phase of the wavefunction are also found, and these give rise to resistive
behaviors that produce exceedingly simple and regular patterns.Comment: 12 pages, special macros jnl.tex,reforder.tex, eqnorder.tex. arXiv
admin note: original tex thoroughly broken, figures missing. Modified so that
tex compiles, original renamed .tex.orig in source
Length of the weaning period affects postweaning growth, health, and carcass merit of ranch-direct beef calves weaned during the fall
Bovine respiratory disease (BRD) is the most economically devastating feedlot disease. Risk factors associated with incidence of BRD include (1) stress associated with maternal separation, (2) stress associated with introduction to an unfamiliar environment, (3) poor intake associated with introduction of novel feedstuffs into the animal\u27s diet, (4) exposure to novel pathogens upon transport to a feeding facility and commingling with unfamiliar cattle, (5) inappropriately administered respiratory disease vaccination programs, and (6) poor response to respiratory disease vaccination programs. Management practices that are collectively referred to as preconditioning are thought to minimize damage to the beef carcass from the BRD complex. Preconditioning management reduces the aforementioned risk factors for respiratory disease by (1) using a relatively long ranch-of-origin weaning period following maternal separation, (2) exposing calves to concentrate-type feedstuffs, and (3) producing heightened resistance to respiratory disease-causing organisms through a preweaning vaccination program. The effectiveness of such programs for preserving animal performance is highly touted by certain segments of the beef industry. Ranch-of-origin weaning periods of up to 60 days are suggested for preconditioning beef calves prior to sale; however, optimal length of the ranch-of-origin weaning period has not been determined experimentally. The objective of this study was to test the validity of beef industry assumptions about appropriate length of ranch-of-origin weaning periods for calves aged 160 to 220 days and weaned during the fall
Mid-infrared plasmons in scaled graphene nanostructures
Plasmonics takes advantage of the collective response of electrons to
electromagnetic waves, enabling dramatic scaling of optical devices beyond the
diffraction limit. Here, we demonstrate the mid-infrared (4 to 15 microns)
plasmons in deeply scaled graphene nanostructures down to 50 nm, more than 100
times smaller than the on-resonance light wavelength in free space. We reveal,
for the first time, the crucial damping channels of graphene plasmons via its
intrinsic optical phonons and scattering from the edges. A plasmon lifetime of
20 femto-seconds and smaller is observed, when damping through the emission of
an optical phonon is allowed. Furthermore, the surface polar phonons in SiO2
substrate underneath the graphene nanostructures lead to a significantly
modified plasmon dispersion and damping, in contrast to a non-polar
diamond-like-carbon (DLC) substrate. Much reduced damping is realized when the
plasmon resonance frequencies are close to the polar phonon frequencies. Our
study paves the way for applications of graphene in plasmonic waveguides,
modulators and detectors in an unprecedentedly broad wavelength range from
sub-terahertz to mid-infrared.Comment: submitte
Proximity induced metal/insulator transition in superlattices
The far-infrared dielectric response of superlattices (SL) composed of
superconducting YBaCuO (YBCO) and ferromagnetic La%
CaMnO (LCMO) has been investigated by ellipsometry. A drastic
decrease of the free carrier response is observed which involves an unusually
large length scale of d20 nm in YBCO and d10
nm in LCMO. A corresponding suppression of metallicity is not observed in SLs
where LCMO is replaced by the paramagnetic metal LaNiO. Our data suggest
that either a long range charge transfer from the YBCO to the LCMO layers or
alternatively a strong coupling of the charge carriers to the different and
competitive kind of magnetic correlations in the LCMO and YBCO layers are at
the heart of the observed metal/insulator transition. The low free carrier
response observed in the far-infrared dielectric response of the magnetic
superconductor RuSrGdCuO is possibly related to this effect
Post-Newtonian expansions for perfect fluids
We prove the existence of a large class of dynamical solutions to the
Einstein-Euler equations that have a first post-Newtonian expansion. The
results here are based on the elliptic-hyperbolic formulation of the
Einstein-Euler equations used in \cite{Oli06}, which contains a singular
parameter \ep = v_T/c, where is a characteristic velocity associated
with the fluid and is the speed of light. As in \cite{Oli06}, energy
estimates on weighted Sobolev spaces are used to analyze the behavior of
solutions to the Einstein-Euler equations in the limit \ep\searrow 0, and to
demonstrate the validity of the first post-Newtonian expansion as an
approximation
Deep Neural Networks for Energy and Position Reconstruction in EXO-200
We apply deep neural networks (DNN) to data from the EXO-200 experiment. In
the studied cases, the DNN is able to reconstruct the relevant parameters -
total energy and position - directly from raw digitized waveforms, with minimal
exceptions. For the first time, the developed algorithms are evaluated on real
detector calibration data. The accuracy of reconstruction either reaches or
exceeds what was achieved by the conventional approaches developed by EXO-200
over the course of the experiment. Most existing DNN approaches to event
reconstruction and classification in particle physics are trained on Monte
Carlo simulated events. Such algorithms are inherently limited by the accuracy
of the simulation. We describe a unique approach that, in an experiment such as
EXO-200, allows to successfully perform certain reconstruction and analysis
tasks by training the network on waveforms from experimental data, either
reducing or eliminating the reliance on the Monte Carlo.Comment: Accepted version. 33 pages, 28 figure
Measurement of the Spectral Shape of the beta-decay of 137Xe to the Ground State of 137Cs in EXO-200 and Comparison with Theory
We report on a comparison between the theoretically predicted and
experimentally measured spectra of the first-forbidden non-unique -decay
transition ^{137}\textrm{Xe}(7/2^-)\to\,^{137}\textrm{Cs}(7/2^+). The
experimental data were acquired by the EXO-200 experiment during a deployment
of an AmBe neutron source. The ultra-low background environment of EXO-200,
together with dedicated source deployment and analysis procedures, allowed for
collection of a pure sample of the decays, with an estimated
signal-to-background ratio of more than 99-to-1 in the energy range from 1075
to 4175 keV. In addition to providing a rare and accurate measurement of the
first-forbidden non-unique -decay shape, this work constitutes a novel
test of the calculated electron spectral shapes in the context of the reactor
antineutrino anomaly and spectral bump.Comment: Version as accepted by PR
- …