Abstract

A concern has been expressed that ``the Jaynes principle can produce fake entanglement'' [R. Horodecki et al., Phys. Rev. A {\bf 59}, 1799 (1999)]. In this paper we discuss the general problem of distilling maximally entangled states from NN copies of a bipartite quantum system about which only partial information is known, for instance in the form of a given expectation value. We point out that there is indeed a problem with applying the Jaynes principle of maximum entropy to more than one copy of a system, but the nature of this problem is classical and was discussed extensively by Jaynes. Under the additional assumption that the state ρ(N)\rho^{(N)} of the NN copies of the quantum system is exchangeable, one can write down a simple general expression for ρ(N)\rho^{(N)}. We show how to modify two standard entanglement purification protocols, one-way hashing and recurrence, so that they can be applied to exchangeable states. We thus give an explicit algorithm for distilling entanglement from an unknown or partially known quantum state.Comment: 20 pages RevTeX 3.0 + 1 figure (encapsulated Postscript) Submitted to Physical Review

    Similar works